
Deep Learning With
TensorFlow

Yonghui Wu

Agenda
● Intro to deep learning
● TensorFlow from 10000 feet up
● TensorFlow key concepts
● Concluding remarks

Intro to deep learning

Deep learning
Deep learning is a branch of artificial intelligence that is
based on neural networks

● loosely inspired by the brain
● built from simple, trainable functions.

input
output

Primitives: the neuron

 y = F(w1x1 +...+ wnxn+b)

X1 Xn...

inputs

● w1...wn are weights,
● b is a bias,
● weights and biases are

parameters,
● F is a “differentiable”

non-linear function.

Primitives: the neuron — example

X1 X2

n = 2
w1 = 1 w2 = −1.2
b = 0.1
F(x) = max(0, x) “Relu”

 y = max(0, x1− 1.2x2 + 0.1)

A modern network [Szegedy et al., 2016]

Image:
Fernanda Viégas

A learning algorithm
Given training examples “(input, output)” pairs
While not done:

1. Pick a batch of random training example (X, Y)
2. Run the neural network on X, generate Y’
3. Compute a loss by comparing Y’ to Y
4. Adjust model parameters to reduce the error (the

“loss”)

Gradient descent
● Compute gradient of the loss with respects to params in

the neural network.
● new_params = old_params - alpha * gradient
● alpha is the learning rate

Deep learning is conceptually very simple
● That is it, that is all the key elements of deep learning
● Typical procedure to solve a problem with deep learning

○ Define a network suitable to the problem one would like to solve.
○ Define a loss function.
○ Initialize the network with small random number
○ Iteratively adjust network params following some optimization algorithm until loss doesn’t

decrease any more

The renaissance of deep learning
● The concept and main algorithm were actually invented 1960’s ~ 1980’s
● It gained popularity only very recently

○ AlexNet won ImageNet 2012 competition, beating runner up by as much as 10% in top-5
accuracy

● People attributed the renaissance of NN to:
○ Large and Larger datasets
○ Advance in computing power

Some attractive properties of deep learning
● Applicable across many domains.
● With a fairly simple conceptual core.

○ Back propagation
○ SGD
○ Neuron

● Benefits from having lots of data.
○ Often requires little data curation.
○ Tolerates inconsistent data.

● Model gets better with more data, more compute
○ Data and compute and sometimes easy to get

● Requires architectural choices but no detailed design of
algorithms and data representations.
○ Can learn intriguing and powerful data representation

More attractive properties of deep learning

Deep Learning

Universal Machine Learning

...that works better than the alternatives!

Current State-of-the-art in:
Speech Recognition
Image Recognition

Machine Translation
Molecular Activity Prediction

Road Hazard Detection
Optical Character Recognition

...

Team Year Place Error (top-5) Params

XRCE (pre-neural-net explosion) 2011 1st 25.8%

Supervision (AlexNet) 2012 1st 16.4% 60M

Clarifai 2013 1st 11.7% 65M

MSRA 2014 3rd 7.35%

VGG 2014 2nd 7.32% 180M

GoogLeNet (Inception) 2014 1st 6.66% 5M

Andrej Karpathy (human) 2014 N/A 5.1% 100 trillion?

BN-Inception (Arxiv) 2015 N/A 4.9% 13M

Inception-v3 (Arxiv) 2015 N/A 3.46% 25M

Rapid Progress in Image Recognition

ImageNet
classification
challenge

“How cold is
 it outside?”

Deep
Recurrent

Neural Network
Acoustic Input Text Output

Neural nets are rapidly replacing previous technologies

Speech Recognition

Google Research Blog - August 2012, August 2015

Machine Translation

GNMT significantly reduced the gap between in translation
quality between MT and human

AlphaGo

AlphaGo dominated the Game of Go

TensorFlow from 10000 feet up

Software for machine learning
and particularly for
deep learning.

First open-source release in
November 2015, under an
Apache 2.0 license.https://tensorflow.org/

and

https://github.com/tensorflow/tensorflow

http://tensorflow.org/
https://github.com/tensorflow/tensorflow

System structure

Core TensorFlow Execution System

CPU GPU TPU

C++ front end Python front end
...

Raspberry
PiAndroidiOS

TPU

GPUCPU

TensorFlow supports many platforms

Java

… and many languages

TensorFlow provides great tools like TensorBoard

Search
Gmail
Translate
Maps
Android
Photos
Speech
YouTube
Play
… many others ...

Production use in many areas:Internal TensorFlow launch

Research use for:

100s of projects and papers

of Google directories containing model description files

2013 20152014 2016 2017

12500

25000

37500

50000

0

50

GitHub Star Count

TensorFlow key concepts

TensorFlow key concepts
● Data flow graph
● Distributed computing
● Model parallelism and data parallelism
● Control flows
● Functions

Mul

Add Relu

biases

weights

examples

labels

Xent

Data: tensors (N-dimensional arrays)

Nodes: operations (ops) on tensors

Dataflow graph

Mul

Add Relu

biases

weights

examples

labels

Xent

Dataflow computation: basic semantics
Edges hold tensors,
at most one at a time.

Mul

Add Relu

biases

weights

examples

labels

Xent

Dataflow computation: basic semantics
A node may fire when all its inputs
are available.

Mul

Add Relu

biases

weights

examples

labels

Xent

Dataflow computation: basic semantics
After firing, the node is done.

Mul

Add Relu

biases

weights

examples

labels

Xent

Dataflow computation: basic semantics
Computation ends when all
data is drained from the graph.

Mul

Add Relu

biases

weights

examples

labels

Xent

Dataflow computation: basic semantics
This simple model extends to
other features (control edges,
state, conditionals, loops, …).

Feeding and Fetching

Run(input={“b”: ...}, outputs={“f:0”})

import tensorflow as tf

examples = tf.placeholder(tf.float32)

labels = tf.placeholder(tf.int32)

weight = tf.Variable(tf.zeros([784,10]))

bias = tf.Variable(tf.zeros([10]))

y = tf.matmul(examples, weight) + bias

loss = tf.cross_entropy(y, labels)

Python API -- Forward Computation

weights_grad, bias_grad = tf.gradients(loss, [weights, bias])
new_weights = tf.assign_sub(weight, lr * weights_grad)
new_bias = tf.assign_sub(bias, lr * bias_grad)
train_op = tf.group([new_weights, new_bias])

Python API -- Backward computation

Add Mul...

learning rate

Assign
Sub

...

some ops compute
losses and gradients

Dataflow computation also “backward”

biases

Stateless ops vs stateful ops
● Two types of TensorFlow ops

○ Stateless ops
○ Stateful ops

● Stateless ops
○ Pure functions
○ Execution of the ops has no side effects
○ Output is a deterministic function of the input
○ Most mathematical ops, like MatMul, BiasAdd, Conv and etc are stateless ops

● Stateful ops
○ Not pure function
○ Op has states that persist across session runs
○ Variables are stateful ops

Add Mul

biases

...

learning rate

Assign
Sub

...

biases and other
parameters are

variables
some ops update

parameters
some ops compute

losses and gradients

Dataflow computation with state

Graph definition vs graph execution
● Graph definition: define the data flow graph

○ Forward subgraph, backward subgraph, and a train subgraph
○ Only specifies how computations should be done
○ Typically done in some frontend, e.g. Python

● Graph execution is completely separate from graph definition
○ The frontend sends GraphDef to the backend
○ Backend will analyze the graph, and will carry out a few rounds of optimization:

■ constant folding, common subexpression elimination and etc
○ Graph execution is done on the backend
○ Actually executes necessary ops in a graph on real data

■ E.g. update the model params
○ Graph execution is typically driven by a frontend as well

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

for i in range(1000):

 batch_xs, batch_ys = mnist.train.next_batch(100)

 sess.run(train_op, feed_dict={examples: batch_xs, labels:

batch_ys})

Python API - Drive the training loop

Distributed execution of TF graph
● With TensorFlow, you can easily distribute graph execution to multiple

devices, and/or multiple machines
● It requires very minimal code change
● TensorFlow will automatically insert nodes to the graph to enable distributed

execution of the graph

GPU 0 CPU

Add Mul

biases

learning rate

Assign
Sub

...
...

Distributed dataflow computation

GPU 0 CPU

Add Mul

biases

learning rate

Assign
Sub

...
...

Distributed dataflow computation

Send Recv

Send Recv

Send

Recv Send
Recv

● TensorFlow adds Send/Recv ops to transport tensors.
● Recv ops pull data from Send ops.

/job:worker/gpu:0 /job:ps/cpu:0

Add Mul

biases

learning rate

Assign
Sub

...
...

Distributed dataflow computation
● Communication across machines is abstracted just like

cross-device communication within a machine.

Send Recv

Send Recv

Send

Recv Send
Recv

/job:worker/gpu:0 /job:ps/cpu:0

Add Mul

biases

learning rate

Assign
Sub

...
...

Control edges for dataflow scheduling
● Control edges impose additional execution ordering.
● Critical-path analysis informs their addition.

Send Recv

Send Recv

Send

Recv Send
Recv

control edge

control edge

Python API - Distributed computation
Stacked LSTMs on one
single devide

for i in range(8):
 for d in range(4): # d is depth
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(
 input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

Stacked LSTMs on Multiple
devices

for i in range(8):
 for d in range(4): # d is depth
 with tf.device("/gpu:%d" % d):
 input = x[i] if d is 0 else m[d-1]
 m[d], c[d] = LSTMCell(
 input, mprev[d], cprev[d])
 mprev[d] = m[d]
 cprev[d] = c[d]

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

A B C D _
_ A B C

GPU1

GPU2

GPU3

GPU4

Parallelism
TensorFlow enables model parallelism and data parallelism:

● A graph can be split across several devices.
● Many graph replicas can process inputs in parallel.

...
...

...

input1

input2

...

...
...

...

...
...

...

...

...
...

...

● Different levels of model parallelism:
○ Across machines, across devices, across cores,

instruction parallelism
● Across machines: limited by network bandwidth / latency
● Across devices: for GPUs, often limited by PCIe bandwidth.
● Across cores: thread parallelism. Almost free.
● On a single core: Instruction parallelism (SIMD). Just free.

Exploiting Model Parallelism

Data Parallelism
● Use multiple model replicas to process different

examples at the same time
○ All collaborate to update model state (parameters) in shared

parameter server(s)

● Speedups depend highly on kind of model
○ Dense models: 10-40X speedup from 50 replicas
○ Sparse models:

■ support many more replicas
■ often can use as many as 1000 replicas

Data Parallelism

Parameter Servers

...Model
Replicas

Data ...

p’Δp’

p’’ = p’ + Δp

Data parallelism
● Params access and update can be synchronous and asynchronous
● In asynchronous model, this is the famous downpour SGD algorithm

○ No guarantee on the consistency of the params

● Synchronous params update usually works better
○ At the cost of training speech due to synchronous cost

Success of Data Parallelism
● Data parallelism is really important for many of Google’s

problems (very large datasets, large models):
○ RankBrain: 500 replicas
○ ImageNet Inception: 50 GPUs, ~40X speedup
○ SmartReply: 16 replicas, each with multiple GPUs
○ Language model on “One Billion Word”: 32 GPUs

Hours

10 replicas
50 replicas

19.6 vs. 80.3 (4.1X)

5.6 vs. 21.8 (3.9X)

Image Model Training Time: 10 vs 50 GPUs

Control-flow constructs
Conditionals and iteration can be useful in building dynamic
models.

For example, Recursive Neural Networks (RNNs)
are widely used for speech recognition,
language modeling, translation,
image captioning, and more.

 Cells

y

while step < len(seq):

 s, y = Cell(seq[step], s)

 ys = ys.append(y)

 step = step + 1

Control-flow constructs
We want:

● Fit with the computational model
● Parallel execution

(sometimes of the iterations of a loop)
● Distributed execution
● Automatic generation of gradient code

 Cells

y

Dynamic dataflow architecture [Arvind et al., 1980s]

 Switch
p

d

 Merge

d

d d

d

d

 Enter(“L1”)

F T

d

d

 Exit

d

d

NextIteration

Execution contexts identify different invocations of the
same node. New operations manipulate these contexts.

Python API - Condition
● Conditional execution of a sub-graph

Python API - While Loop
● Repeated execution of a sub-graph
● Very useful for RNN
● TF essentially a programming language

TF is essentially a programming language
● With if, and while, TF is basically a programming langugage
● TF can easily extended with custom kernels
● Can be used to implement very complicated logic

○ E.g. BeamSearch can implemented entirely in TF

Python API - Functions
● You can define functions to combine primitive ops into a logical op

● TensorFlow executor treats functions as if they are primitive ops

Function benefits
● Reduce the size of the graphs
● Benefits of monolithic op, but without the hassle of writing the gradient

functions.
● Reduce the memory usage

○ Intermediate results are being discarded
○ Could mean more computation during backprop.

A Few TensorFlow Community Examples
● DQN: github.com/nivwusquorum/tensorflow-deepq

● NeuralArt: github.com/woodrush/neural-art-tf

● Char RNN: github.com/sherjilozair/char-rnn-tensorflow

● Keras ported to TensorFlow: github.com/fchollet/keras

● Show and Tell: github.com/jazzsaxmafia/show_and_tell.tensorflow

● Mandarin translation: github.com/jikexueyuanwiki/tensorflow-zh

...

https://github.com/nivwusquorum/tensorflow-deepq
https://github.com/woodrush/neural-art-tf
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/fchollet/keras
https://github.com/jazzsaxmafia/show_and_tell.tensorflow
https://github.com/jikexueyuanwiki/tensorflow-zh

More examples related to NLP
● POS tagging:

https://github.com/rockingdingo/deepnlp/tree/master/deepnlp/pos
● Syntaxnet:

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-mo
st.html

● Seq2seq:
https://opensource.googleblog.com/2017/04/tf-seq2seq-sequence-to-seque
nce-framework-in-tensorflow.html

● Many tutorials: https://tensorflow.google.cn/tutorials/
●

https://github.com/rockingdingo/deepnlp/tree/master/deepnlp/pos
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://opensource.googleblog.com/2017/04/tf-seq2seq-sequence-to-sequence-framework-in-tensorflow.html
https://opensource.googleblog.com/2017/04/tf-seq2seq-sequence-to-sequence-framework-in-tensorflow.html
https://tensorflow.google.cn/tutorials/

Concluding remarks

Conclusions
● Ease of expression:

○ Lots of crazy ML ideas are just different Graphs
○ Non-NN algorithms can also benefit if it maps to graph.

● Portability: can run on wide variety of platforms
● Scalability:

○ Easy to scale
○ Much faster training

Conclusions (cont.)
● Open Sourcing of TensorFlow

○ Rapid exchange of research ideas (we hope!)
○ Easy deployment of ML systems into products
○ TensorFlow community doing interesting things!

