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Introduction

e Sequence to sequence learning:
o Try to learn a mapping from one sequence to another sequence

e Examples include

o Machine translation (MT)

o  Automatic speech recognition (ASR)
o Speech synthesis (TTS)

o Handwriting generation

e Seg2se learning using Encoder/decoder with attention model architecture has
achieved state of the art results on many of the problems



Language modeling



Language Modeling

context target P(wi|lwy—1, we_g, ... ws_5)
the cat sat on the mat 0.15
W5  Wt4 W3 W2 Wil Wt
the cat sat on the rug 0.12
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the cat sat on the printer

Slide Credit: Piotr Mirowski
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The Chain Rule

T
P(wy,wsa, ..., wpr_1,wy) = HP(wt|wt_1, Wi_2,...,W1)
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Markov assumption

P(wy,wo,...,wpr_1,wr) ~ HP(
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N-grams model improvements

e Very intuitive, easy to understand
e Sparsity
o “w,c”, or“c” may not appear in a corpus at all, but the probability P(w|c) shouldn't be 0

e Limited context
o The length of the context is very limited

e Back-off models
o Back off from trigram model to a bigram model, or from a bigram model to a unigram model.

O  Kneser—Ney smoothing
o Katz's smoothing



https://en.wikipedia.org/wiki/Kneser%E2%80%93Ney_smoothing
https://en.wikipedia.org/wiki/Katz%27s_back-off_model

e

Neural language model

e Two key ingredients: neural embeddings and recurrent neural networks
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Neural embedding
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Recurrent Neural Network Language Models

[Jeffrey L ElIman (1991) “Distributeé r‘&presentauons simple recurrent networ k'%-and grammatical structure”, Machine Learning;
Tomas \ﬂlkolgﬂet al. (2010) “Recurrent neural network based Ianguag.e model”, INTERSPEECH]
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Recurrent Neural Network Language Models
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Recurrent Neural Network Language Models
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Recurrent Neural Network Language Models
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Recurrent Neural Network-Language Models
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Recurrent Neural Network Language Models
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What do we Optimize?

0" = arg max Eymdata 10g Py(wy, . .., wr)



RNN language model

e Recurrent neural network based language model by Tomas Mikolov et al at
Interspeech 2010

Exact architecture, e.g. num
Model PPL layers, num nodes and etc,

KN 5gram 93.7 used in the experiments is
feedforward NN | 85.1 not clear.

recurrent NN 80.0 “
4xBRNN + KN5 73.5

@ Simple experiment: 4M words from Switchboard corpus

@ Feedforward networks used here are slightly different than
what Bengio & Schwenk use



http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

Long short-term memory network

iy = 0 (Waims + Whihs—1 + Weics—1 + by)
fo=0(Wgszi + Whhs—1 + Weper—1 + by)
¢t = ficr—1 + iz tanh (Wyeay + Wichy—1 + be)
0; = 0 (WeoZt + Whohi—1 + Weoct + bo)

hs = 0; tanh(c;)




More powerful RNN

e To further improve the power of RNN networks, one can stack a few layers of
RNN/LSTM.




Residual connection

e For deep RNN network, usually you need residual connections to
stabilize/speed up training




A much better RNN language model

e Exploring the Limits of Language Modeling, by Rafal Jozefowicz

MODEL TEST PERPLEXITY NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JIET AL., 2015A) 68.3 4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013) 67.6 1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015) 529 3
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013) a3 20
LSTM-512-512 54.1 0.82
LSTM-1024-512 48.2 0.82
LSTM-2048-512 43.7 0.83
LSTM-8192-2048 (NO DROPOUT) 371.9 33
LSTM-8192-2048 (50% DROPOUT) 32.2 3.3
2-LAYER LSTM-8192-1024 (BIG LSTM) 30.6 1.8

\


https://arxiv.org/abs/1602.02410
https://arxiv.org/find/cs/1/au:+Jozefowicz_R/0/1/0/all/0/1

The state of the art LM

e Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer, by Noam Shazeer and et al

e Stacked LSTM layers + Mixture of Expert layer in between


https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf

MOE
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Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this

case, the sparse gating function selects two experts to perform computations. Their outputs are
modulated by the outputs of the gating network.




MOE LM results

e Results on LM1B dataset

Test Test #Parameters ops/timestep
Perplexity | Perplexity |excluding embedding
10-epochs | 100 epochs | a s | - ~
Best Published Results 34.7 30.6 | 151 million | 151 million
Low-Budget MoE Model 34.1 4303 million 8.9 million
Medium-Budget MoE Model 31.3 4313 million 33.8 million
High-Budget MoE Model 28.0 4371 million 142.77 million)




Neural Machine Translation



seq2seq

e Sequence to Sequence Learning with Neural Networks, by llya et al
o Concatenate the source and target sequence
o Only make prediction on the target sequence

W X Y Z <EOS>
A A A A A
— > —> —> —> >
T T T A A A A A
A B L& <EQS> W X Y Zz




Decoding in a Nutshell (Beam Size 2)

b S
Yi,... ,yT/
2 partial hypothesis expand hypotheses 2 new partial hypotheses
| decided
| My decision
| thought rune . —’
My expand | tried P IdeC|de.d.
and . My decision
sort My thinking
My direction




Important Tricks

When the model was first proposed, no one would have believed that it can
solve the translation problem

e But it worked quite well

e Tricks that are important for the model quality
o Reverse the source sequence
o Deep Istms (4 layers Istm networks)




Seq2Seq experimental results

Table 1: The performance of the LSTM on WMT’14 English to French test set (ntst14). Note that
an ensemble of 5 LSTMs with a beam of size 2 is cheaper than of a single LSTM with a beam of

size 12.

Method

test BLEU score (ntst14)

Bahdanau et al. [2] 28.45

Baseline System [29] 33.30

Single forward LSTM, beam size 12 26.17
Single reversed LSTM, beam size 12 30.59
Ensemble of 5 reversed LSTMs, beam size 1 33.00
Ensemble of 2 reversed LSTMs, beam size 12 33.27
Ensemble of 5 reversed LSTMs, beam size 2 34.50
Ensemble of 5 reversed LSTMs, beam size 12 34.81




Limitation of the model

e Information bottleneck
o Regardless of the sequence length, source sequence is encoded using fixed size vectors
o Solution: Attention

e Out of vocabulary (O0V) problems

Fixed size vocab, constrained by computational budget and GPU RAM.

All words not in vocab will be mapped to the same <UNK> token.

More of a problem for morphologically rich languages like Russian and Polish.
Solution: WordPiece or BytePair encoding

O O O O



Attention

e Generating Sequences With Recurrent Neural Networks, by Alex Graves
o Motonic, only moves left to right
o Proposed to solve the handwriting synthesis issue
o ltisreferred to Gaussian Mixture Model (GMM) Attention in the literature

e Generalized by Dzmitry Bahdanau in his paper “Neural Machine Translation by

Jointly Learning to Align and Translate”
o No more monotonicity constraints



Online handwriting synthesis

Figure 14: Mixture density outputs for handwriting synthesis. The top
heatmap shows the predictive distributions for the pen locations, the bottom
heatmap shows the mixture component weights. Comparison with Fig. 10 indi-
cates that the synthesis network makes more precise predictions (with smaller
density blobs) than the prediction-only network, especially at the ends of strokes,
where the synthesis network has the advantage of knowing which letter comes
next.



GMM Attention

e K Gaussian components
e Each defines a density distribution over the character sequence

Given a length U character sequence c and a length 7' data sequence x, the

soft window w; into c at timestep ¢ (1 < t < T) is defined by the following
discrete convolution with a mixture of K Gaussian functions

K
o(t,u) = z af exp (—6f (ﬁ;f — u)2> (46)
k=1

U
Wy = Z P(t, u)cy (47)
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GMM attention

e GMM params are updated at every timestep.
e Attention params are estimated using decoder rnn hidden states
e Modeled as shift from the previous center. Hence monotonicity guarantee

(&e, B> Bt) = Whiphi + by

oy — eXP (aft)
B: — exp (Bt)
Kt = Ke—1 + exp (Re)
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Figure 13: Window weights during a handwriting synthesis sequence
Each point on the map shows the value of ¢(¢,u), where ¢ indexes the pen trace
along the horizontal axis and u indexes the text character along the vertical axis.
The bright line is the alignment chosen by the network between the characters
and the writing. Notice that the line spreads out at the boundaries between
characters; this means the network receives information about next and previous
letters as it makes transitions, which helps guide its predictions.




A generalization of GMM attention

e Neural Machine Translation by Jointly Learning to
Align and Translate, by Dzmitry Bahdanau, et al
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Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (r1,Z2,...,2T).



Attention benefits

e At any point of decoding, the model only focuses on the most relevant part of
the source, much like how human do
e Encoding of the source sequence is now distributed over all the source

words.
o Longer sequence is encoded using more bits



Attention visulization
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BLEU score

Experimental result
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.



Convolution Attention

e Attention-Based Models for Speech Recognition, by Jan Chorowski et al
e Key idea: explicitly incorporate a location information
e Encourages attention to gradually move forward

We extend this content-based attention mechanism of the original model to be location-aware by
making it take into account the alignment produced at the previous step. First, we extract £ vectors
fij € RF for every position j of the previous alignment «;_; by convolving it with a matrix

F e RFXr.

fi=F*a;_1.

(8)

These additional vectors f; ; are then used by the scoring mechanism e; ;:

€y = w' tanh(Ws;—1 +Vh; +

Ufi,;

+0) ©)




Multi-headed attention

e Simple extension to single headed attention
e Multiple attention runs in parallel. Each individual attention may focus on a
different region in the input

e IiiiiiFRFEEFFIEEEARESEL00%

;;;;;;;;;;;;
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Motonic Attention

e Online and Linear-Time
Attention by Enforcing
Monotonic Alignments, by
Colin

e Linear time complexity

e (Guarantees monotonicity

OOO0000

OO0

Memory h

Figure 2. Schematic of our novel monotonic stochastic decoding
process. At each output timestep, the decoder inspects memory
entries (indicated in gray) from left-to-right starting from where
it left off at the previous output timestep and chooses a single
one (indicated in black). A black node indicates that memory
element h; is aligned to output y;. White nodes indicate that a
particular input-output alignment was not considered because it
violates monotonicity. Arrows indicate the order of processing
and dependence between memory entries and output timesteps.



Solve the OOV problem

e Move to sub-word unit
e Character model
o Sequence length too long
e Wordpiece model strikes a good balance between character model and word

model

o Common words are still just just one wordpiece
o Rare words are often decomposed into a morphologically meaningful way, word-root and
suffix



WordPiece model / Bytepair Encoding

e Japanese and Korean voice search, by Mike Schuster
e Same as bytepair encoding, which Rico Sennrich first adopted for NMT
o Neural Machine Translation of Rare Words with Subword Units

e Minimal description length

o Find an encoding of words subject to vocab size limit such that a corpus can be encoded
using minimal number of tokens



Simple greedy algorithm

e Very simple algorithm
o  Start from all characters
o lteratively merge most frequent bi-grams
o Stop when vocab size is reached

e Most common word is a single wordpiece

e Word: Jet makers feud over seat width with big orders at stake

e wordpieces: J et makers feud over seat width with big orders at stake



One more important trick

e Rare words are often copied from source to target in verbatim
e To facilitate such copying, source and target should share the same

WordPiece model
o Rare words will be segmented exactly the same way



Google Neural Machine Translation

e All the techniques combined

o Very deep Istm stack
o Attention
o  Wordpiece model

e Large scale NMT

o Carefully engineered

o Pieces are carefully tuned and assembled together
e Some novel inventions

o Better decoding algorithm
o Quantized training and inference
O
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Translation quality

.............................................................................................................. perfect translation

—(IUMAN
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phrase-based (PBMT)
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Multilingual Model

e Model several language pairs in single model
o Weran first experiments in 2/2016, surprisingly this worked!

e Prepend source with additional token to indicate target language

o Translate to Spanish:
m <2es> How are you </s> -> COomo estas </s>
o Translate to English:
m <2en> Como estas </s> -> How are you </s>
e No other changes to model architecture!
o Extremely simple and effective
o  Usually with shared WPM for source/target

e Benefits
o simplifies model deployment
o improves translation quality



Multilingual Model

Single | Multi _
Translation:

34.5 35.1 <2es> How are you </s> COmo estas </s>

(=] S <2en> Como estas </s> How are you </s>
080 D 380 373




Zero-Shot Translation

single multi

34.5 35.0 Zero-shot (pt->es):
44.5 437 <2es> Como vocé esta </s> Como estas </s>




Some more recent NMT models

e MOE model, from Google Brain
e Conv seq2seq model, from Facebook
e Transformer Model, from Google Brain



Mixture of experts NMT model

e Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer, by Noam Shazeer et al

e Based onthe GNMT model architecture

o Add a Mixture of Exports layer between the first and second LSTM layers
o Adds a lot of params, but actually reduces humber of compute



Table 2: Results on WMT’ 14 En— Fr newstest2014 (bold values represent best results).

Model Test Test |ops/timenstep Total Training
Perplexity | BLEU #Parameters Time

MoE with 2048 Experts 2.69 |40.35 85M 8.7B 3 days/64 k40s
MoE with 2048 Experts (longer training) 2.63 |40.56 85M 8.7B 6 days/64 k40s
GNMT (Wu et al., 2016) 2.79 39.22 214M 278M |6 days/96 k80s
GNMT+RL (Wu et al., 2016) 2.96 39.92 214M 278M |6 days/96 k80s
PBMT (Durrani et al., 2014) 37.0

LSTM (6-layer) (Luong et al., 2015b) 315

LSTM (6-layer+PosUnk) (Luong et al., 2015b) 33.1

DeepAtt (Zhou et al., 2016) 37.7

DeepAtt+PosUnk (Zhou et al., 2016) 39.2




Conv sequence to sequence model

e Convolutional Sequence to Sequence Learning, by Jonas Gehring et al
e Main difference from GNMT, Istm is replaced by gated linear units

v([A B]) = A® o(B)

e Other difference from GNMT

o Attention at every decoding layer
o Dot product based attention
o Position embedding
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Conv sequence to sequence learning

e Very nice results
e Appears to be very sensitive to params initialization, hard to reproduce

WMT’14 English-French BLEU
Wu et al. (2016) GNMT (Word 80K) 37.90
Wu et al. (2016) GNMT (Word pieces) 38.95

Wu et al. (2016) GNMT (Word pieces) + R 39.92
ConvS2S (BPE 40K) 40.51




Transformer Model

e Attention is all you need, by Ashish and Noam from the Google Brain team.

e Building blocks
o Multi-headed Self-attention
o  Multi-layer Multi-headed Attention
o Hand engineered position embedding
o Residual connections and layer normalization to stabalize model training

e Itisthe current state of the art
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Figure 1: The Transformer - model architecture.



Three ways of attention
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Self-Attention

Convolution Self-Attention



Self-Attention

Convolution Self-Attention



Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

N—— BLEU Training Cost (FLOPs)
o EN-DE EN-FR EN-DE EN-FR

ByteNet [17] 23.75

Deep-Att + PosUnk [37] 39.2 140 =10%°
GNMT + RL [36] 24.6 39.92 2.3-101% 1.4.10%
ConvS2S [9] 25.16  40.46 9.6-10® 1.5-10%°
MOoE [31] 26.03  40.56 2.0-101° 1.2.10%0
Deep-Att + PosUnk Ensemble [37] 40.4 8.0-10%°
GNMT + RL Ensemble [36] 2630  41.16 1.8-10%°  1.1-10%
ConvS2S Ensemble [9] 2636  41.29 7.7:10"%° 1.2:-10%
Transformer (base model) 713 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3.10%°




Further reading

e Neural Machine Translation, book chapter



https://arxiv.org/abs/1709.07809

Speech Recognition



Sequence models in ASR

e Covers a few popular end-to-end ASR models: CTC, RNN-T, LAS
e CTCis by Alex Graves

o Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks, by Alex Graves

e RNN-T is by Alex Graves
o Sequence Transduction with Recurrent Neural Networks, by Alex Graves
e LAS s by Google Brain and Yoshua's group

o Listen, Attend and Spell, by William Chan et al
o Attention-Based Models for Speech Recognition, by Jan Chorowski et al




Speech frontend

e To transform the raw speech signal into a format that is more suitable for
ASR
o Keeps only the essential information in speech

e Trend is speech frontend is getting simpler and simpler

o Modern ASR system is capable of extracting useful information from noisy signal directly.
o Complex frontend runs the risk of throwing away useful information

e Research suggest that you can even get rid of the ASR directly.
o Learning the Speech Front-end With Raw Waveform CLDNNSs, by Tara and et al.



Log mel filter bank energies

e Take a short time fourier transform of the speech signal with an appropriate
window size and shift. Typical window size and shift are 25ms and 10ms
respectively.

e Convert frequency energies from linear scale to a mel scale, using triangular
overlapping windows.

e Take the log of the energy



https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Window_function#Triangular_window
https://en.wikipedia.org/wiki/Window_function#Triangular_window

CTC model

e Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks, by Alex Graves

e |tis a quite old model, proposed in 2005

e Used in Baidu's DeepSpeech and DeepSpeech2 systems



Alignment

e Model output is frame synchronous
o The model output one label symbol at every frame
e To match the output sequence to the input sequence in length

o blank symbol, “_"
o repeated symbols

The cat sat on the mat Label sequence
t h h__ee __m_att sigments
h e e L m m a Alignment #2




CTC loss

e CTC loss assumes “temporal independence” in the output layer
e Given an alignment of label sequence to input sequence, P(alignment | input)
is trivial to compute
o lItis simply the product of P(label symbol) at each frame
e P(label | input) = sum_{all valid alignments}(P(alignment | input))

o Exponentially many valid alignments
o Dynamic programming algorithm available to compute this sum exactly

e CTCloss=E, ., input}Iog(P(IabeI | input))



CTC loss

Figure 3. illustration of the forward backward algo-
rithm applied to the labelling ‘CAT’. Black circles
represent labels, and white circles represent blanks. Arrows
signify allowed transitions. Forward variables are updated
in the direction of the arrows, and backward variables are
updated against them.




CTC decoding

e Greedy decoding
o  Find an alignment such that P(alignment|input) is maximized
o Take the most probable symbol at each time step
o Remove repeated symbols and blank symbols

e Dynamic programming based decoding
o  Find the label sequence such that P(labellinput) is maximized
o Can use an algorithm similar to the one used in training



Nice extension of the CTC model

e Gram-CTC: Automatic Unit Selection and Target Decomposition for Sequence
Labelling, by Hairong Liu et al

e Segmentation is fixed in standard CTC, e.g. “CAT" to “C", “A” and “T".

e Key ideais to allow the network to learn a valid segmentation at the same
time

CAT ->“C", “A”, “T"

CAT ->“C", “AT”

CAT -> “CA”, “T”

CAT -> “CAT”

O O O O
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Figure 1. llustration of the states and the forward-backward transitions for the label ‘CAT’. Here we let GG be the set of all uni-grams and
bi-grams of the English alphabet. The set of all valid states .S for the label [ = ‘CAT" are listed to the left. The set of states and transitions
that are common to both vanilla and Gram-CTC are in black, and those that are unique to Gram-CTC are in orange. In general, any
extension that collapses back to [ is a valid transition - For example, we can transition into (‘CAT’, 1) from (‘CAT"’, 1), (‘CA’, 2), (‘CA’,
1) and (‘CA’, 0) but not from (‘CAT’, 0) or (‘CAT’, 2)



CTC

e Itis fairly stable to train
o Guaranteed monotonicity in alignment

e Natualy produces an alignment as a by-product
o Can be useful for other applications

e Very weak language model
o Usually need to combine with a strong external language model for it to perform well



RNN-T

e Proposed to address the limitations in the CTC model, namely the temporal
independence assumption

e Two recurrent neural networks

o One on the source sequence
o The other on the label sequence

e Target side RNN allows the model to learn a much better build-in language

model
e A separate joint network on top to combine the source sequence RNN and the

target sequence RNN



RNN-T
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RNN-T

e A special symbol “null” is introduced

e When “null” is generated, the model moves one step forward in the
source sequence

e At training time, dynamic programming is used to sum up probabilities in
all the path

e Each prediction path is (u + t) steps long




RNN-T

e Definitely stronger built-in language model

e |tis harder to train, but one can pre-train the source RNN with a CTC loss, and
target RNN using a LM loss on some large text corpus

e Decoder RNN is completely independent of the source



Attention based models

e Very similar to the translation model
o speech as input instead of text
e Gaining popularity
o Attention-Based Models for Speech Recognition, by Jan Chorowski et al
o Listen, Attend and Spell, by William Chan et al
o Very Deep Convolutional Networks for End-to-End Speech Recognition, by Yu Zhang et al
o Latent Sequence Decompositions, by William Chan et al
e Research from my group suggest attention based models are very promising
for ASR



Attention based models

e Offers the best modeling flexibility
o Decoder has strictly more information as it conditions on the encoding of the source
o No artificial statistical assumptions, like temporal independence assumption in CTC, or the
independence assumption among the joint networks in RNN-T
e Intheory should be the best one to use
o In practice depends very much on model tuning as well



Speller

¥ Ys Y {eos) Grapheme characters y; are
modelled by the
CharacterDistribution

LAS

AttentionContext creates
context vector ¢; from

and s;

e Listen: Acoustic model
e Attend: Dynamic time warping
e Spell: language model

Long input sequence x is encoded with the pyramidal
ho) BLSTM Listen into shorter sequence h

Listener

. s Figure 1: Listen, Attend and Spell (LAS) model: the listener is a pyramidal BLSTM encoding our input
httpS/ /a erV.org/ pdf/ 1 50801 21 1 ) pdf sequence X into high level features h, the speller is an attention-based decoder generating the y characters

from h.
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Attention-based models have the encoder feeding the

decoder with acoustic information.




A Comparison of Sequence-to-Sequence Models for Speech Recognition,

Table 1: WERs (%) on various test sets for the models compared
in this work. The attention-based model with two decoder layers
is the single best sequence-to-sequence model.

Clean Nois .
Monel dict VS dict yvs numeric
Baseline Uni. CDP 6.4 9.9 8.7 14.6 1141
Baseline BiDi. CDP 5.4 8.6 6.9 - 11.4
End-to-end systems
CTC-grapheme’ 39.4 | 534 - - - +——— CTC
RNN Transducer 6.6 128 | 85 | 22.0 9.9 t+—— RNN-T
RNN Trans. with att. 6.5 12.5 | 84 | 21.5 9.7
Att. 1-layer dec. 6.6 | 11.7 | 87 | 20.6 9.0
Att. 2-layer dec. 6.3 11.2 8.1 19.7 8.7 +— LAS

https://arxiv.org/pdf/1703.08581.pdf


http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0233.PDF

Architecture SWBD CH
WER | WER
i Iterated-CTC [29] 11.3 18.7
£ BLSTM + LF MMI [21] 8.5 15.3
= LACE+ LF MMI * [28] 8.3 14.8
& Dilated convolutions [25] TF 14.5
CTC + Gram-CTC [17] 7.3 14.7
BLSTM + Feature fusion|[23] 72 12.7
CTC 17 9.0 [ e
RNN-Transducer
- Beam Search NO LM 8.5 16.4
g Beam Search + LM 8.1 175
Attention
Beam Search NO LM 8.6 17.8
Beam Search + LM 8.6 17.8

Table 1. WER comparison against previous published results
on Fisher-Switchboard Hub5’00 benchmark using in-domain
data. We only list results using single models here. All the
previous works reported WER using language models. We
don’t leverage any speaker information in our models, though
it has been shown to reduce WER in previous works [28, 25].

https://arxiv.org/pdf/1707.07413.pdf



Speech Synthesis



Speech synthesis

It is the reverse problem of speech recognition
Existed for a long time
Straightforward solution is Concatenative TTS

(@)

(@)
(@)
(@)

Stitch together pieces of recorded speech, with smoothing at the boundaries
Quite intelligible

Prosody is not natural, sounds very robotic

Widely used




Neural based TTS

e Fully neural network based TTS system is getting popular
o Wavenet from Google DeepMind
o TacoTron from Google
o DeepVoice from Baidu
o Voiceloop from Facebook

e Wavenet can been seen as a high quality vocoder
e TacoTron, DeepVoice and VoiceLoop are all end to end TTS systems
e Will focus on DeepVoice and TacoTron in this talk


https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://arxiv.org/abs/1703.10135
http://research.baidu.com/wp-content/uploads/2017/05/Deep-Voice-2-Complete-Arxiv.pdf
https://arxiv.org/abs/1707.06588

DeepVoice

e Follows more traditional approach
e |tis apipelined system

O O O O

text -> phoneme

phoneme -> duration
phoneme + duration -> Pictch
Wavenet like vocoder
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Figure 1: Inference system diagram: first text-phonemes dictionary conversion, second predict
phoneme durations, third upsample and generate Fj, finally feed F;; and phonemes to vocal model.



TacoTlron

e Itisjustone endto end model
e The model predicts linear spectrograms from text directly
o  So no explicit duration model, pitch model and etc

e Used fixed Griffin-Lim algorithm to convert from spectrograms to speech
o  Griffin-Lim as inverse FFT

e Could benefit from a better vocoder
o e.g. Wavenet

e Some examples can be found:
o https://google.github.io/tacotron/




Model Architecture
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Figure 1: Model architecture. The model takes characters as input and outputs the corresponding
raw spectrogram, which is then fed to the Griffin-Lim reconstruction algorithm to synthesize speech.




Other applications of sequence models



What else we can do with sequence models?

e Image captioning
o Show and Tell: A Neural Image Caption Generator, by Oriol Vinyals

e Syntactic constituency parsing
o Grammar as a Foreign Language, by Oriol Vinyals

e Handwriting synthesis
o Generating Sequences With Recurrent Neural Networks, by Alex Graves

e Many more ...



Image Captioning

p(English | French)

p(English | Image)

1. Vinyals, O, et al. "Show and Tell: A Neural Image Caption Generator." CVPR (2015).
2.  Mao, J., et al. "Deep captioning with multimodal recurrent neural networks (m-rnn).” ICLR (2015).
3. Karpathy, A, Li, F., “Deep visual-semantic alignments for generating image descriptions.” CVPR (2015).



e
A man holding a tennis racquet Two pizzas sitting on top
on a tennis court. of a stove top oven

A group of young people A man flying through the air
playing a game of Frisbee while riding a snowboard




Syntactic parsing
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Figure 2: Example parsing task and its linearization.



Handwriting synthesis
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Conclusion

e Introduced many popular sequence models for language modeling, for
machine translation, automatic speech recognition, speech synthesis, and

others

e Advanced topics that | didn’t cover
o Scheduled sampling
Sequence training to directly optimize for the final metric
Online sequence models
Language model integration into NMT, ASR and etc

o O O
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