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What is learning theory about

Study the fundamental of machine learning, like

• How to formalize machine learning problems
we may use different framework, e.g. statistical, online, distributed

• What does it mean for a problem to be ”learnable”

• How many data do we need to learn to a given accuracy

• How to build sound learning algorithms based on theory
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The core of learning theory – generalization

Aim: Collected data
learning
=====⇒ Model

predicting
======⇒ Unknown data

Generalization: Model should fit unknown data well, not training data!

Let us see several examples to make this idea clear.
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An example

Hook’s Law: Suppose you are Hook now, and have some experimental
data, what will you conclude?

Why do we use linear function rather than complex polynomial function?

Simple and fit well for unknown data!
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Some other examples

Kepler’s Third Law Learning a classifier
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Ockham’s Razor

William of Occam (circa 1287-1347)

”entities should not be multiplied unncecessarily” (in Latin)

Usually interpreted as ”Among competing hypotheses, the one with the
fewest assumptions should be selected”

In this lecture, we will see how to formalize the idea of generalization
rigorously.

Before that, We will introduce some tools which will be used later.
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Probability inequality

Two basic inequalities:

1. Markov’s inequality: Random variable X > 0, then for any
a > 0,there is

Pr(X > a) 6
E[X]

a

2. Chebyshev’s inequality: Random variable X, if E[X] is bounded,
then for any a > 0,there is

Pr(X −E[X] > a) 6
Var[X]

a2

Problem 1: Prove above two inequalities.
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Law of large numbers

An intuitive example: If X and Y are uniform in [0, 1], then Z =
X + Y

2
is triangular:

A kind of concentration property!
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Law of large numbers

Suppose X1, X2, · · · are i.i.d. random variables
µ = E[Xi] <∞, σ2 = Var[Xi] <∞

Let X̄n =
1

n

n∑
i=1

Xi

The weak law of large numbers (i.i.d. case)

For any ε > 0, as n→∞

Pr
(
|X̄n − µ| > ε

)
−→ 0
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A simulation result

Consider toss a fair coin, consider the sample mean:

How fast does sample mean converge to the ture mean given error?

From Chebyshev’s inequality, we know it converges as order O(
1

n
).

Can we obtain better result?
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Central limit theorem

Suppose X1, X2, · · · are i.i.d. random variables
µ = E[Xi] <∞, σ2 = Var[Xi] <∞

Let X̄n =
1

n

n∑
i=1

Xi

Central limit theorem

As n→∞, there is

X̄n → N

(
µ,
σ2

n

)
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A simulation result

If Xi are i.i.d. uniform in [0, 1], then the distribution of X̄n:
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Concentration inequality

Concentration inequality: provide bounds on how a random variable
deviates from some value (e.g. expectation)
Chernoff Bound: Suppose X1, X2, . . . , Xn are i.i.d random variables and
p = Pr(Xi = 1), then for any samll ε > 0, there is

Pr[X̄ −E[X] > ε] 6 exp(−nD(p+ ε||p)) 6 exp(−2nε2)

Pr[X̄ −E[X] 6 −ε] 6 exp(−nD(p− ε||p)) 6 exp(−2nε2)

where X̄ =
1

n

∑
Xi, D(a||b) = a ln

a

b
+ (1− a) ln

1− a
1− b

Compared with Chebyshev’s inequality, the convergence rate now improved

to O(e−n) from O

(
1

n

)
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Concentration inequality

Two generalizations of Chernoff Bound:

1. Chernoff bound for i.i.d. r.v.s in [0,1]: If X1, X2, . . . , Xn are i.i.d
r.v.s and Xi ∈ [0, 1], p = E(Xi), then for any samll ε > 0, there is

Pr[|X̄ − p| > ε] 6 2e−2nε
2

2. Chernoff bound for only independent r.v.s in [0,1]: If
X1, X2, . . . , Xn are independent r.v.s and Xi ∈ [0, 1],

pi = E(Xi), p =
1

n

∑
pi, then for any samll ε > 0, there is

Pr[|X̄ − p| > ε] 6 2e−2nε
2
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Concentration inequality

Hoeffding’s inequality

Let X1, X2, . . . , Xn are i.i.d r.v.s and Xi ∈ [ai, bi], let Sn =
∑

Xi, then

for any ε > 0, there is

Pr[Sn −E[Sn] > ε] 6 e
− 2ε2∑

(bi−ai)2

Pr[Sn −E[Sn] 6 −ε] 6 e
− 2ε2∑

(bi−ai)2

Proof sketch:

Pr[Sn −E[Sn] > ε] 6 e−tεE[et(Sn−E[Sn])]

=
∏

e−tεE[et(Xi−E[Xi])]

6
∏

e−tεet
2(bi−ai)2/8 (∵ Hoeffding′s lemma)

= e−tεet
2
∑

(bi−ai)2/8

6 e
− 2ε2∑

(bi−ai)2
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Basic notation – Data

• Input space/ Feature space: X
(e.g. various measures of an object, bag-of-words, vector of grey-scale
values...)

Feature extraction itself is an important area in ML, is also an art,
but we won’t cover in this lecture.

• Output space/ Label space: Y
(e.g. {±1}, [K],R−valued output...)

• Assume an underlying unknown concept c : X 7→ Y, which is the ture
labeling function.
A concept class is a set of concepts we want to learn, denoted by C
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Basic notation – Model

• How is data generated? data x ∈ X obeys some fixed but unknown
distribution D

• What do we observe? a data set S = {(x1, y1), . . . , (xn, yn)}, each
xi is i.i.d according to D, and yi = h∗(xi)

• How to measure performance or success?
Loss function: ` : Y × Y 7→ R
(e.g. 0-1 loss `(y′, y) = 1{y′ 6= y}, sq-loss `(y′, y) = (y′ − y)2...)

y′: predicting label, y: ture label.

• Where do we place our prior assumption or model assumptions?
Model class/ Hpothesis class H ⊂ YX
(e.g. H = {x 7→ sign(fTx)},H = {x 7→ fTx :‖f‖2 6 1})

In what next, we will fouce on the binary classification case
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Generalization and empirical error

Note Y = {0, 1} now.

Generalization error

Given an h ∈ H, a ture labeling function c ∈ C (Note C may be equal to H
or not), an underlying distribution D, the generalization error or risk of h is
defined by

R(h) = Prx∼D[h(x) 6= c(x)] = E[1{h(x) 6= c(x)}]

Empirical error

Given an h ∈ H, a ture labeling function c ∈ C, a data set
S = {x1, . . . , xn}, the empirical error of h is defined by

R̂S(h) =
1

n

n∑
i=1

1{h(xi) 6= c(xi)}

When fix h, there is E[R̂S(h)] = R(h).
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Probably Approximately Correct (PAC) learning framework

Our goal: make generalization error as small as possible!

PAC-learning

A concept class C is said to be PAC-learnable if there exists an algorithm A
and a polynomial fucntion poly(·, ·), s.t. for any ε, δ > 0, any D on X , any

c ∈ C, the following holds for any sample size n > poly(
1

ε
,
1

δ
):

PrS∼Dn [R(hS) 6 ε] > 1− δ

where hS = A(S).

Further, if A runs in poly(
1

ε
,
1

δ
), then C is said to be efficiently

PAC-learnable.
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Several key points about PAC framework

1. It is a distribution free model, i.e. no particular assumption about D;

2. Training and test samples are drawn according to the same D
(otherwise transfer learning);

3. It deals with the question of learnability for C not a particular concept.
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A specific example

Learning axis-aligned rectangles:

• Data: points in the plane, X = R2

• Concept class C: all the axis-aligned
rectangles lying in R2

• Points in the ture concept labeled with 1

• Assume H = C
For the figure, c represents the ture concept, h represents a hypothesis.

Where is the error region? fasle negatives and false positives.

Now, we will show this concept class is PAC-learnable.
How to? Give one PAC-learning algorithm!
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A specific example

Our algorithm: For a data set S, return the tightest axis-aligned rectange
hS containing points labeled with 1.

• hS do not produce any false
positives;

• Error region of hS is included in
c and out of hS

• W.L.G., assume Pr(c) > ε (here
Pr(c) means the probability of
area in c), otherwise
R(hS) 6 Pr(c) 6 ε
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A specific example

Now, as Pr(c) > ε, define four rectangular regions r1, r2, r3, r4 along the
sides of c, s.t. for each i ∈ [4], there is Pr(ri) > ε/4. Then

PrS∼Dn [R(hS) > ε]

6PrS∼Dn [∪4i=1{hS ∩ ri = ∅}]

6
4∑
i=1

PrS∼Dn [{hS ∩ ri = ∅}]

64(1− ε/4)n (∵ Pr(ri) > ε/4)

64 exp(−nε/4) (∵ 1− x 6 e−x)

Thus, in order to have PrS∼Dn [R(hS) > ε] 6 δ, we can impose

4 exp(−nε/4) 6 δ ⇐⇒ n >
4

ε
log

4

δ
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The idea of uniform generalization

We want to learn argminh∈HR(h), but trouble is we do not know
underlying distribution D, thus no explicit form for R(h).

A straightforward indicator of R(h) is R̂S(h) , and according to Law of
Large Number, we know R̂S(h) is a good approximation of R(h) when n is
large enough.

So is it a good choice to choose h as argminh∈H R̂(h) ?

However, this is not a good choice. As we can easily choose h from H,
s.t. R̂S(h) = 0, but furture performance can be very poor...
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The idea of uniform generalization

Where is it wrong with above idea?

Well, mainly two reasons:

1. we choose h from H, which may be too complex, thus has a bad
influence over future unknown examples;

2. the chosen h is data dependent, i.e. it just suits training examples
well, has no guarantee for future performance.

Therefore, we want to bound the difference between them, i.e.

Pr(R(h) 6 R̂S(h) + ?) > 1− δ

Note, probability is over the training sampls.
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The idea of uniform generalization

We may have guessed, the ? term in above inequality may be dependent on
the measurement of the complexity of H. Now, we will make it clear.

Note, if h is fixed, we simply have Pr(R(h) > R̂S(h) + ε) 6 e−2nε
2

But h is dependent of S

So we want a generalization bound uniformly for all h ∈ H!

We can guess it is easier when |H| is finite (as we have union bound), and
much harder when it is infinite.
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Generalization bound – Consistent and Finite hypothesis

Note consistent means C ⊂ H, inconsistent means C 6= H

Learning bound - finite H, consistent case

Suppose H is finite. A is an algorithm that for any c ∈ H and i.i.d sample
S returns a consistent hypothesis hS : R̂(hS) = 0. Then for any ε > 0,

Pr(R(hS) > ε) 6 |H|(1− ε)n

Proof sketch:

Pr(R(hS) > ε) 6 Pr
(
∃h ∈ H, R̂S(h) = 0 ∩R(h) > ε

)
6
∑
h∈H

Pr(R̂S(h) = 0 ∩R(h) > ε)

6
∑
h∈H

Pr(R̂S(h) = 0|R(h) > ε)

6 |H|(1− ε)n

which also means Pr

(
R(hS) 6

1

n

(
log |H|+ log

1

δ

))
> 1− δ
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Generalization bound – Inconsistent and Finite hypothesis

Learning bound - finite H, inconsistent case

Suppose H is a finite hypothesis set. Then for any ε > 0, there is

Pr(∀h ∈ H, |R(h)− R̂S(h)| 6 ε) > 1− 2|H|e−2nε2

Proof sketch:

Pr
(
∃h ∈ H, |R(h)− R̂S(h)| > ε

)
=Pr

(
(|R(h1)− R̂S(h1)| > ε) ∪ · · · ∪ (|R(h|H|)− R̂S(h|H|)| > ε)

)
6
∑
h∈H

Pr(|R(h)− R̂S(h)| > ε)

62|H|e−2nε
2

⇐⇒ Pr

∀h ∈ H, |R(h)− R̂S(h)| 6

√
log |H|+ log 2

δ

2n

 > 1− δ

Note accuracy decreases from O(1/n) to O(1/
√
n) in inconsistent case.
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Generalization bound – Infinite hypothesis

What if |H| is infinite? As union bound is no more use..
The critical part is to measure the complexity of H!

Suppose giving training samples S = {x1, . . . , xn}, then we consider

Hx1,...,xn = {h(x1), . . . , h(xn) : h ∈ H}

Since h only takes {0, 1}, Hx1,...,xn will be finite, no matter how big H is.

Growth Function

Growth function is defined as NH(n) := max
x1,...,xn

|Hx1,...,xn |

It is easy to see NH(n) 6 2n.
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VC-dimension

Though growth function function is a measurement for the complexity of H,
but it is still a function related to n, we want an index only related to H.

Note, if NH(n) = 2n, means there is a dataset of size n, s.t. H can
generate any classification on these points. (say H shatters the set)

Thus, there we can define:

VC-dimension

The VC-dimension of H is defined as follows:

VC-dim(H) = max{n : NH(n) = 2n}
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Some examples about VC-dimesnion

Example 1

H={intervals on the real line}, VC-dim(H) = 2

Example 2

H={axis-aligned rectangles on R2}, VC-dim(H) = 4

Problem 2: Prove the VC-dimension of the set of hyperplaces in Rd is
d+ 1.
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Relation between VC-dimension and the growth function

Theorem, Sauer’s lemma

Assume d is the VC-dimension of H,then for all n, there is

NH(n) 6
d∑
i=0

(
n

i

)
6

(
en

d

)d
Proof sketch:
The lefthand inequality: once n 6 d, it obviously holds;
If n > d, for an intuitive view, assume (h(x1), . . . , h(xd+1)) 6= 0d+1, which
means there are at most d 0s in (h(x1), . . . , h(xn)), thus

NH(n) 6
d∑
i=0

(
n

i

)
.
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Proof of Sauer’s lemma

Now we give the proof for a concrete example, and it is easy to obtain for
general case.
Assume n = 4, d = 2, and the avoid set for H is

And we can prove that

The above inequalities follow from the fact: if we set one column the same
number (say 0) for non-star entries, the new set will not be bigger.
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Proof of Sauer’s lemma

The righthand inequality:

d∑
i=0

(
n

i

)
6

d∑
i=0

(
n

i

)(
n

d

)d−i
6

n∑
i=0

(
n

i

)(
n

d

)d−i
=

(
n

d

)d n∑
i=0

(
n

i

)(
d

n

)i
=

(
n

d

)d(
1 +

d

n

)n
6

(
en

d

)d
(∵ (1− x) 6 e−x)
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VC-Generalization bound

Through VC-dimension and growth function, we can obtain generalization
bound for infinite case:

VC-Generalization bound

Over random draw of S = {x1, . . . , xn}, with probability at least 1− δ,
there is

∀h ∈ H, R(h) 6 R̂S(h) +O


√
d log

(
n
d

)
+ log 1

δ

n


Thus for several H, if their empirical error is close, then the simpler

about H, the better about generalization

38



A corollary of VC-generalization bound

Generalization ability of ERM algorithm

Let X be the instance space, Y = {0, 1}. For any learning problem (i.e. ∀D
over X ), the Empirical Risk Minimization (ERM) algorithm learns a
classifier ĥS = argminh∈H R̂S(h), and let h∗ = argminh∈HR(h). Then
with probability at least 1− δ over the random draw of a training set S of
n examples, there is

R(ĥS) 6 R(h∗) +O


√
d log

(
n
d

)
+ log 1

δ

n


Problem 3: Prove the above corollary.
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An overview of generalization bound

We can see, small empirical error does not represent small
generalization error, we also need consider the model complexity!
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The idea of regularization

Based on above theory, how to design algorihtms?

1. ERM (Empirical Risk Minimization) algorithm:

hERMS = argminh∈H R̂S(h)

Regardless of complexity term, poor performance; computationally
intractable

2. SRM (Structual Risk Minimization) algorithm: H0 ⊂ · · · ⊂ Hk ⊂ · · ·

hSRMS = argminh∈Hk R̂S(h) + complexity(Hk, n)

Computationally expensive, since it requires multiple ERM problems

3. Regularization methods:

hREGS = argminh∈H R̂S(h) + λR(h)

where R(h) represents the complexity term, and λ > 0 is a
regularization parameter.
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Common Regularization Methods

L2-Regularization:

hL2S = argminh∈H R̂S(h) + λ‖h‖22

Example: SVM

min
w,b

1

n

n∑
i=1

[1− yi(w · xi + b)]+ +
λ

2
‖w‖22

L1-Regularization:

hL1S = argminh∈H R̂S(h) + λ‖h‖1

Example: LASSO

min
w,b

1

n

n∑
i=1

(w · xi + b− yi)2 +
λ

2
‖w‖1
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Early Stopping in Boosting

Boosting: A family of algorithms whcih combine weak learners to
produce a strong learner

General boosting framework

where S is the set of basic learners (or say hypothesis set H), and A is the loss.

Concrete boosting algorithm: AdaBoost, Gradient Boosting etc...

When H is fixed,
∑
|ᾱk| can be seen as the complexity of the final model.

Early stopping ⇐⇒ regularization
∑
|ᾱk| 6 B in some sense
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Frequentist & Bayesian

Suppose: D, collected data; θ, unknown parameters of the model
Frequentist: Regard θ as the fixed constant

Maximum Likelihood: max
θ
P (D|θ)

Bayesian: Regard θ as a random variable

Maximum A Posterior: max
θ
P (θ|D)

From Bayesian’s view, after observing data, what we know is a distribution
Q over all classifiers h ∈ Ω

With Q, there are two types of classifiers:

• Stochastic classifier hQ, with generalization error R(hQ) = EQ[R(h)]

• Voting classifier gQ, with generalization error R(gQ) = R(EQh)

One can prove: R(gQ) 6 2R(hQ)
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PAC-Bayes Theorem

Similar with VC-generalization bound, there is a Bayesian version.

PAC-Bayes Theorem

For any prior P , with probability 1− δ, for all distributions Q over the
hypothesis space, there is

R(hQ) 6 R̂(hQ) +

√
D(Q||P ) + log 3/δ

n

where R̂(hQ) is the empirical error of stochastic classifier, and

D(Q||P ) := Eh∼Q log
Q(h)

P (h)
is the relative entropy between Q,P

Note in PAC-Bayes theorem, it does not contain any complexity
measurement of the hypothesis space, like VC-dimension.
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Algorithmic Stability

Motivation:
1. All of previous generalization bounds ignore concrete learning algorithm
2. Using algorithmic dependent analysis could lead to better guarantees

Firstly, we need define some general properties w.r.t. learning algorithms

Definition: ε-uniformly stable

A randomized algorithm A is ε-uniformly stable if for all data sets
S, S′ ∈ Zn, such that S and S′ differ in at most one example, we have

∀z, EA[`(A(S); z)− f(`(S′); z)] 6 ε

where `(·; z) is the loss function w.r.t. data z

The infimum over all satisfied ε is denoted as εstab(A,n).
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Main Theorem of Algorithmic Stability Theory

Theorem: Generalization in expectation

Suppose A is ε-uniformly stable, then∣∣∣ES,A[R[A(S)]− R̂S [A(S)]]
∣∣∣ 6 ε

A concrete example: stability of SGD for convex losses (Hardt et al.
ICML2016)

Assume f(·; z) ∈ [0, 1] is β-smooth, convex and L-Lipschitz for every z.
Suppose we run SGD with step size αt 6 2/β for T steps. Then, SGD
satisfies uniform stability with

εstab 6
2L2

n

∑
t

αt

If f(·, z) is further γ-strongly convex, then εstab 6
2L2

γn
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Mystery of Deep Learning

Deep learning has achieved huge success in real world.

In 2015, Lecun: ”What’s wrong with deep learning”

ICLR 2017 Best Paper:
Understanding deep learning requires rethinking generalization
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Mystery of Deep Learning

Many interesting distinctions about DNN:
• number of parameters � number of data
• Easy to fit data, even for random label or random feature

Traditional learning theory fails to explain:

For deep neural nets, |E|: number of parameters, L: number of layers

• VC-dimension (Shalev-Schwartz 2014): O(|E| log |E|)
• Other complexity measurements, like covering number, has

exponential dependence on L

All these measurements are far beyond the number of data points!

For stability theory, best result for non-convex but β smooth loss function:

εstab 6 O

(
T 1−1/(βc+1)

n

)
(for SGM)

which maybe linear dependent on training iterations!
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Stochastic Gradient Langevin Dynamics

Suppose FS(w) is the empirical loss function,
E[gk] = ∇FS(wk), ξk ∼ N (0, Id)

SGLD

Wk+1 = Wk − ηgk +

√
2η

β
ξk

One can connect it with following stochastic differential equation

dW (t) = −∇Fz(W (t))dt+

√
2

β
dB(t)

Consider an equivalent process with such evolution, w.r.t. density function

∂π

∂t
= ∇ ·

(
1

β
∇π + πg

)
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Our Results

For SGLD algorithm, from view of the PAC-Bayes theory,

PAC-Bayes Theory for SGLD w.r.t Non-convex Loss

For ERM with regularization term
λ

2
‖w‖2. Let wN be the result of SGLD

at N -th round. Under mild conditions, with high probability, we have

R(wN )− R̂S(wN ) 6 O


√√√√β

n

N∑
k=1

ηke
−λ

2
(TN−Tk)E‖gk‖2



where Tk =
k∑
i=1

ηi
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Our Results

For SGLD algorithm, from view of the stability theory,

Stability Theory for SGLD w.r.t Non-convex Loss

For ERM problem, assume each fi(·) is L-Lipschitz. Let wN be the result
of SGLD at N -th round. Under mild conditions, we have

E[R(wN )− R̂S(wN )] 6 O

 1

n

k0 + L

√√√√β
N∑

k=k0+1

ηk




where the expectation is taken w.r.t. random draw of training data, and
k0 := min{k : ηkβL

2 < 1}
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