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General Introduction



Machine Learning

Machine learning explores the study and 
construction of algorithms that can learn from 
and make predictions on data



Supervised Learning

• Learn from labeled data

• Classification, regression, ranking



Unsupervised Learning

• Learn from unlabeled 
data, find structure 
from the data

• Clustering

• Dimension reduction



Reinforcement Learning

The idea that we learn by interacting with our environment is 
probably the first to occur to us when we think about the 
nature of learning….

Reinforcement learning problems involve learning
what to do - how to map situations to actions - so as to
maximize a numerical reward signal.



Reinforcement Learning

• Agent-oriented learning-learning by interacting with an environment 
to achieve a goal
• Learning by trial and error, with only delayed evaluative feedback(reward)

• Agent learns a policy mapping states to actions
• Seeking to maximize its cumulative reward in the long run





RL vs Other Machine Learning

• Supervised learning 
• Regression, classification, 

ranking, …
• Learning from examples, learning 

from a teacher

• Unsupervised learning
• Dimension reduction, density 

estimation, clustering
• Learning without supervision 

• Reinforcement learning
• Sequential decision making
• Learning from interaction, 

learning by doing, learning from 
delayed reward



• Supervised Learning

• Reinforcement Learning

One-shot Decision v.s Sequential Decisions

• Agent Learns a Policy

state action

Take a
move

…… Take a
move

…… Win!



When to Use Reinforcement Learning

• Second order effect : your output (action) will influence the data 
(environment)
• Web click : You learn from your observed CTRs, if you adapt a new ranker, the 

observed data distribution will change.
• City traffic : You give a current best strategy to the traffic jam, but it may cause larger 

jam in other place that you don’t expect
• Financial market

• Tasks : You focus on long-term reward from interactions, feedback
• Job market

• Psychology learning : understanding user’s sequential behavior
• Social Network : why does he follow this guy, for linking new friends, for own 

interests



1955

Today

1955 1962 1969 1976 1983 1990 1997 2004 2011

The beginning, by R. Bellman, C. Shannon, 
Minsky
1955

Temporal difference learning
1981

Reinforcement 
learning with 
neural network
1985

Q learning and TD(lambda)
1989

TD-Gammon (Neural Network)
1995

First convergent TD algorithm with 
function approximation
2008

DeepMind's 
Alpha DQN
2015

DeepMind's 
Alpha Go
2016



RL has achieved a wide of success across different 
applications.



Basic Settings



Reinforcement Learning

Environment

Agent 

Action 𝑎𝑡−1 Reward 𝑟𝑡
State 𝑠𝑡
Observation 𝑜𝑡

❑ a set of environment states S;
❑ a set of actions A;
❑ rules of transitioning between states;
❑ rules that determine the scalar immediate 

reward of a transition; and
❑ rules that describe what the agent 

observes.

Goal: Maximize expected long-term payoff



Example Applications

Application Action Observation State Reward

Playing Go
(boardgame)

Where to place a 
stone

Configuration of board Configuration of board
Win game: +1

Else: -1

Playing Atari
(video games)

Joystick and button 
inputs

Screen at time t
Screen at times 

t, t-1, t-2, t-3
Game score increment

Direct mail marketing
Whether to mail a 
customer a catalog

Whether customer 
makes a purchase 

History of purchases 
and mailings

$ profit from purchase 
(if any) - $ cost of 

mailing catalog

Conversational system
What to say to the 

user, or API action to 
invoke

What user says, or 
what API returns

History of the 
conversation; state of 

the back-end

Task success: +10
Task fail: -20

Else: -1
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Markov Chain

• Markov state
𝑃 𝑠𝑡+1 𝑠1, … , 𝑠𝑡 = 𝑃(𝑠𝑡+1|𝑠𝑡)

𝑠1 𝑠2 𝑠3
𝑃(𝑠𝑡+1|𝑠𝑡) 𝑃(𝑠𝑡+1|𝑠𝑡)

Andrey Markov



Markov Decision Process

𝑠1 𝑠2 𝑠3
𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑎1 𝑎2 𝑎3𝑟1 𝑟2 𝑟3

𝑜1 𝑜2 𝑜3

❑ 𝑠𝑡: state
❑ 𝑜𝑡: observation
❑ 𝑎𝑡: action
❑ 𝑟𝑡: reward



Markov Decision Process

• Fully observable environments ➔Markov 
decision process (MDP)

𝑜𝑡 = 𝑠𝑡

• Partially observable environments ➔ partially 
observable Markov decision process (POMDP)

𝑜𝑡 ≠ 𝑠𝑡



Markov Decision Process

• A Markov Decision Process(MDP) is a tuple:  (S , A , P , R , 𝛾)
• S is a finite set of states

• A is a finite set of actions

• P is state transition probability

• R is reward function

• 𝛾 is a discount factor 𝛾 ∈ [0,1]

• Trajectory.
• …𝑆t, 𝐴t, 𝑅t+1, 𝑆t+1, 𝐴t+1, 𝑅t+2 , 𝑆t+2, …



Policy

• A mapping from state to action
• Deterministic 𝑎 = 𝜋 𝑠

• Stochastic 𝑝 = 𝜋 𝑠, 𝑎

• Informally, we are searching a policy to maximize the discounted sum 
of future rewards:



Action-Value Function

• An action-value function says how good it is to be in a state, take an 
action, and thereafter follow a policy:

Delayed reward is taken into consideration.



Action-Value Function

• An action-value function says how good it is to be in a state, take an 
action, and thereafter follow a policy:

• Action-value functions decompose into Bellman expectation 
equation. 

Delayed reward is taken into consideration.



Optimal Value Functions 

• An optimal value function is the maximum achievable value.

• Once we have 𝑞∗ we can act optimally, 

• Optimal values decompose into Bellman optimality equation.



Review: Major Concepts of a RL Agent 

• Model: characterizes the environment/system
• State transition rule: 𝑃 𝑠′ 𝑠, 𝑎

• Immediate reward: 𝑟 𝑠, 𝑎

• Policy: describes agent’s behavior
• a mapping from state to action, 𝜋: 𝑆 ⇒ 𝐴

• Could be deterministic or stochastic 

• Value: evaluates how good is a state and/or action
• Expected discounted long-term payoff

• 𝑣𝜋 𝑠 = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯|𝑠𝑡 = 𝑠]

• 𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]



Tabular Approaches



Learning and Planning

• Two fundamental problems in sequential decision making

• Planning:
• A model of the environment is known
• The agent performs computations with its model (without any external 

interaction)
• The agent improves its policy 
• a.k.a. deliberation, reasoning, introspection, pondering, thought, search

• Reinforcement learning:
• The environment is initially unknown
• The agent interacts with the environment
• The agent improves its policy, with exploring the environment



Recall: Bellman Expectation Equation 

• State-value function

𝑣𝜋(𝑠) = 𝐸{𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 +⋯ |𝑠}

= 𝐸𝜋 𝑟𝑡+1 + 𝛾𝑣𝜋 𝑠′ 𝑠

= 𝑟 𝑠, 𝜋 𝑠 + 𝛾 σ𝑠′ 𝑃 𝑠′ 𝑠, 𝜋 𝑠 𝑣𝜋(𝑠′)

𝑣𝜋 = 𝑟𝜋 + 𝛾𝑃𝜋𝑣𝜋

• Action-value function 
𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋[𝑟𝑡+1 + 𝛾𝑞𝜋(𝑠′, 𝑎′)|𝑠, 𝑎]

Richard Bellman



Planning (Policy Evaluation)

Given an exact model (i.e., reward function, transition probabilities,), and a 
fixed policy 𝜋

Algorithm:
Arbitrary initialization: 𝑣0
For 𝑘 = 0,1,2,…

𝑣𝜋
𝑘+1 = 𝑟𝜋 + 𝛾𝑃𝜋𝑣𝜋

𝑘

Stopping criterion: 𝑣𝜋
𝑘+1 − 𝑣𝜋

𝑘 ≤ 𝜖



Recall: Bellman Optimality Equation

• Optimal value function 
• Optimal state-value function: 𝑣∗ 𝑠 = max

𝜋
𝑣𝜋 𝑠

• Optimal action-value function: 𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋 𝑠, 𝑎

• Bellman optimality equation 
• 𝑣∗ 𝑠 = max

𝑎
𝑞∗ 𝑠, 𝑎

• 𝑞∗ 𝑠, 𝑎 = 𝑅𝑠
𝑎 + 𝛾σ𝑠′ 𝑃𝑠𝑠′

𝑎 𝑣∗(𝑠
′)



Planning (Optimal Control)

Given an exact model (i.e., reward function, transition probabilities)

Value iteration with Bellman optimality equation :
Arbitrary initialization: 𝑞0
For 𝑘 = 0,1,2,…

∀𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 𝑞𝑘+1 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′∈𝑆𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑞𝑘(𝑠
′, 𝑎′)

Stopping criterion: max
𝑠∈𝑆,𝑎∈𝐴

𝑞𝑘+1 𝑠, 𝑎 − 𝑞𝑘 𝑠, 𝑎 ≤ 𝜖



Learning in MDPs

• Have access to the real system but no model

• Generate experience 𝑜1, 𝑎1, 𝑟1, 𝑜2, 𝑎2, 𝑟2, … , 𝑜𝑡−1, 𝑎𝑡−1, 𝑟𝑡−1, 𝑜𝑡

• Two kinds of approaches
• Model-free learning

• Model-based learning



Monte-Carlo Policy Evaluation

• To evaluate state 𝑠

• The first time-step 𝑡 that state 𝑠 is visited in an episode,

• Increment counter 𝑁(𝑠) = 𝑁(𝑠) + 1

• Increment total return 𝑆 𝑠 = 𝑆(𝑠) + 𝐺𝑡

• Value is estimated by mean return 𝑉 𝑠 =
𝑆 𝑠

𝑁 𝑠

• By law of large numbers, 𝑉 𝑠 → 𝑣𝜋 𝑠 𝑎𝑠 𝑁 𝑠 → ∞



Incremental Monte-Carlo Update

𝜇𝑘 =
1

𝑘


𝑗=1

𝑘

𝑥𝑗 =
1

𝑘
𝑥𝑘 +

𝑗=1

𝑘−1

𝑥𝑗

=
1

𝑘
𝑥𝑘 + 𝑘 − 1 𝜇𝑘−1

= 𝜇𝑘−1 +
1

𝑘
𝑥𝑘 − 𝜇𝑘−1

For each state 𝑠 with return 𝐺𝑡: 𝑁 𝑠 ← 𝑁 𝑠 + 1

𝑉 𝑠 ← 𝑉 𝑠 +
1

𝑁 𝑠
(𝐺𝑡 − 𝑉 𝑠 )

Handle non-stationary problem: 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼(𝐺𝑡 − 𝑉 𝑠 )



Monte-Carlo Policy Evaluation

𝑣 𝑠𝑡 ← 𝑣 𝑠𝑡 + 𝛼 𝐺𝑡 − 𝑣 𝑠𝑡
𝐺𝑡 is the actual long-term return following state 𝑠𝑡 in a sampled trajectory



Monte-Carlo Reinforcement Learning

• MC methods learn directly from episodes of experience

• MC is model-free: no knowledge of MDP transitions / rewards

• MC learns from complete episodes
• Values for each state or pair state-action are updated only based on final 

reward, not on estimations of neighbor states

• MC uses the simplest possible idea: value = mean return

• Caveat: can only apply MC to episodic MDPs
• All episodes must terminate



Temporal-Difference Policy Evaluation

TD: 𝑣 𝑠𝑡 ← 𝑣 𝑠𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑣(𝑠𝑡+1) − 𝑣 𝑠𝑡
𝑟𝑡 is the actual immediate reward following state 𝑠𝑡 in a sampled step

Monte-Carlo : 𝑣 𝑠𝑡 ← 𝑣 𝑠𝑡 + 𝛼 𝐺𝑡 − 𝑣 𝑠𝑡



Temporal-Difference Policy Evaluation

• TD methods learn directly from episodes of experience

• TD is model-free: no knowledge of MDP transitions / rewards

• TD learns from incomplete episodes, by bootstrapping

• TD updates a guess towards a guess

• Simplest temporal-difference learning algorithm: TD(0)
• Update value 𝑣 𝑠𝑡 toward estimated return 𝑟𝑡+1 + 𝛾𝑣 𝑠𝑡+1

𝑣 𝑠𝑡 = 𝑣 𝑠𝑡 + 𝛼(𝑟𝑡+1 + 𝛾𝑣 𝑠𝑡+1 − 𝑣 𝑠𝑡 )
• 𝑟𝑡+1 + 𝛾𝑣 𝑠𝑡+1 is called the TD target
• 𝛿𝑡 = 𝑟𝑡+1 + 𝛾𝑣 𝑠𝑡+1 − 𝑣 𝑠𝑡 is called the TD error



Comparisons

MC

TD

DP



Policy Improvement



Policy Iteration



𝜖-greedy Exploration



Monte-Carlo Policy Iteration



Monte-Carlo Control



MC vs TD Control

• Temporal-difference (TD) learning has several advantages over 
Monte-Carlo (MC)
• Lower variance

• Online

• Incomplete sequences

• Natural idea: use TD instead of MC in our control loop
• Apply TD to Q(S; A)

• Use 𝜖-greedy policy improvement

• Update every time-step 



Model-based Learning

• Use experience data to estimate model

• Compute optimal policy w.r.t the estimated model



Summary to RL

Planning Policy evaluation For a fixed policy Value iteration, policy 
iterationOptimal control Optimize Policy

Model-free learning Policy evaluation For a fixed policy Monte-carlo, TD learning

Optimal control Optimize Policy

Model-based learning



Large Scale RL

• So far we have represented value function by a lookup table
• Every state 𝑠 has an entry 𝑣(𝑠)

• Or every state-action pair 𝑠, 𝑎 has an entry 𝑞(𝑠, 𝑎)

• Problem with large MDPs:
• Too many states and/or actions to sore in memory

• Too slow to learn the value of each state (action pair) individually

• Backgammon: 1020 states

• Go: 10170 states



Solution: Function Approximation for RL

• Estimate value function with function approximation
• ො𝑣 𝑠; 𝜃 ≈ 𝑣𝜋 𝑠 or ො𝑞 𝑠, 𝑎; 𝜃 ≈ 𝑞𝜋(𝑠, 𝑎)

• Generalize from seen states to unseen states

• Update parameter 𝜃 using MC or TD learning

• Policy function

• Model transition function



Deep Reinforcement Learning
Deep learning . Value based . Policy gradients

Actor-critic  . Model based



Deep Learning Is Making Break-through!
人工智能技术在限定图像类别
的封闭试验中，也已经达到或
超过了人类的水平

2016年10月，微软的语音识别系统在

日常对话数据上，达到了5.9%的单

词错误率，首次取得与人类相当的

识别精度



Deep Learning

1958: Birth of 
Perceptron and neural 
networks

1974: Backpropagation

Late 1980s: convolution neural 
networks (CNN) and recurrent neural 
networks (RNN) trained using 
backpropagation

2006: Unsupervised pretraining
for deep neutral networks

2012: Distributed deep learning 
(e.g., Google Brain)

2013: DQN for deep 
reinforcement learning

1997: LSTM-RNN
2015: Open source tools: MxNet, 
TensorFlow, CNTK

t

Deep learning (deep machine learning, or deep structured
learning, or hierarchical learning, or sometimes DL) is a
branch of machine learning based on a set of algorithms
that attempt to model high-level abstractions in data by
using model architectures, with complex structures or
otherwise, composed of multiple non-linear
transformations.

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_transformation


Driving Power

• Big data: web pages, search logs, 
social networks, and new 
mechanisms for data collection: 
conversation and crowdsourcing

• Big computer clusters: CPU 
clusters, GPU clusters, FPGA farms, 
provided by Amazon, Azure, etc.

• Deep models: 1000+ layers, tens 
of billions of parameters



Value based methods: estimate value 
function or Q-function of the optimal 
policy (no explicit policy)



Nature 2015
Human Level Control Through Deep 
Reinforcement Learning



Representations of Atari Games

• End-to-end learning of values 𝑄(𝑠, 𝑎) from pixels 𝑠

• Input state 𝑠 is stack of raw pixels from last 4 frames

• Output is 𝑄(𝑠, 𝑎) for 18 joystick/button positions

• Reward is change in score for that step

Human-level Control Through Deep Reinforcement Learning



Value Iteration with Q-Learning

• Represent value function by deep Q-network with weights 𝜃

• Define objective function by mean-squared error in Q-values

• Leading to the following Q-learning gradient

• Optimize objective end-to-end by SGD

𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄𝜋(𝑠, 𝑎)

𝐿 𝜃 = 𝐸 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; 𝜃 − 𝑄 𝑠, 𝑎; 𝜃
2

𝜕𝐿 𝜃

𝜕𝜃
= 𝐸 𝑟 + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′; 𝜃 − 𝑄 𝑠, 𝑎; 𝜃

𝜕𝑄 𝑠, 𝑎; 𝜃

𝜕𝜃



Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

• Data is sequential
• Successive samples are correlated, non-iid

• Policy changes rapidly with slight changes to Q-values
• Policy may oscillate

• Distribution of data can swing from one extreme to another



Deep Q-Networks

• DQN provides a stable solution to deep value-based RL

• Use experience replay
• Break correlations in data, bring us back to iid setting

• Learn from all past policies

• Using off-policy Q-learning

• Freeze target Q-network
• Avoid oscillations

• Break correlations between Q-network and target



Deep Q-Networks: Experience Replay

To remove correlations, build data-set from agent's own experience

• Take action at according to 𝜖-greedy policy

• Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) in replay memory D

• Sample random mini-batch of transitions (𝑠, 𝑎, 𝑟, 𝑠′) from D

• Optimize MSE between Q-network and Q-learning targets, e.g.

𝐿 𝜃 = 𝐸𝑠,𝑎,𝑟,𝑠′∼𝐷 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; 𝜃 − 𝑄 𝑠, 𝑎; 𝜃
2



Deep Q-Networks: Fixed target network

To avoid oscillations, fix parameters used in Q-learning target

• Compute Q-learning targets w.r.t. old, fixed parameters 𝜃−

• Optimize MSE between Q-network and Q-learning targets

• Periodically update fixed parameters 𝜃− ← 𝜃

𝐿 𝜃 = 𝐸𝑠,𝑎,𝑟,𝑠′∼𝐷 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃
2

𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′; 𝜃−



Experiment
Of 49 Atari games
43 games are better than state-of-art results
29 games achieves 75% expert score





Other Tricks

• DQN clips the rewards to [-1; +1]

• This prevents Q-values from becoming too large

• Ensures gradients are well-conditioned

• Can’t tell difference between small and large rewards

• Better approach: normalize network output

• e.g. via batch normalization 



Extensions

• Deep Recurrent Q-Learning for Partially Observable MDPs
• Use CNN + LSTM instead of CNN to encode frames of images

• Deep Attention Recurrent Q-Network
• Use CNN + LSTM + Attention model to encode frames of images



Policy gradients: directly 
differentiate the objective



Gradient Computation



Policy Gradients

• Optimization Problem: Find 𝜃 that maximizes expected total reward.
• The gradient of a stochastic policy 𝜋θ(𝑎|𝑠) is given by

• The gradient of a deterministic policy 𝑎 = 𝜇θ 𝑠 is given by

• Gradient tries to 
• Increase probability of paths with positive R

• Decrease probability of paths with negative R



REINFORCE

• We use return 𝑣𝑡 as an unbiased sample of Q.
• 𝑣𝑡 = 𝑟1 + 𝑟2 +⋯+ 𝑟𝑡

• high variance

• limited for stochastic case 



Actor-critic: estimate value function 
or Q-function of the current policy,
use it to improve policy



Actor-Critic

• We use a critic to estimate the action-
value function

• Actor-critic algorithms
• Updates action-value function parameters

• Updates policy parameters θ, 

in direction suggested by critic



Review

• Value Based
• Learnt Value Function

• Implicit policy
• (e.g. 𝜖-greedy)

• Policy Based
• No Value Function

• Learnt Policy

• Actor-Critic
• Learnt Value Function

• Learnt Policy



Model based DRL

• Learn a transition model of the environment/system
𝑃(𝑟, 𝑠′|𝑠, 𝑎)

• Using deep network to represent the model

• Define loss function for the model

• Optimize the loss by SGD or its variants

• Plan using the transition model
• E.g., lookahead using the transition model to find optimal actions



Model based DRL: Challenges

• Errors in the transition model compound over the trajectory

• By the end of a long trajectory, rewards can be totally wrong

• Model-based RL has failed in Atari 



Challenges and Opportunities



1. Robustness – random seeds



1. Robustness – random seeds

Deep Reinforcement Learning that Matters, AAAI18



2. Robustness – across 
task

Deep Reinforcement Learning that Matters, AAAI18



As a 
Comparison

• ResNet performs pretty well on various kinds of 
tasks

• Object detection

• Image segmentation

• Go playing

• Image generation

• …



3. Learning - sample 
efficiency

• Supervised learning
• Learning from oracle

• Reinforcement learning
• Learning from trial and error

Rainbow: Combining Improvements in Deep Reinforcement Learning



Multi-task/transfer learning

• Humans can’t learn individual complex tasks from scratch.

• Maybe our agents shouldn’t either.

• We ultimately want our agents to learn many tasks in many 
environments
• learn to learn new tasks quickly (Duan et al. ’17, Wang et al. ’17, Finn et al. 

ICML ’17)

• share information across tasks in other ways (Rusu et al. NIPS ’16, 
Andrychowicz et al. ‘17, Cabi et al. ’17, Teh et al. ’17)

• Better exploration strategies



4. Optimization – local optima



5. No/sparse reward

• Usually no (visible) immediate reward for each action

• Maybe no (visible) explicit final reward for a sequence of actions

• Don’t know how to terminate a sequence

Real world interaction:

• Most DRL algos are for games or robotics

• Reward information is defined by video games in Atari and Go

• Within controlled environments

Consequences:



• Scalar reward is an extremely sparse signal, while at the same time, 
humans can learn without any external rewards. 
• Self-supervision (Osband et al. NIPS ’16, Houthooft et al. NIPS ’16, Pathak et 

al. ICML ’17, Fu*, Co-Reyes* et al. ‘17, Tang et al. ICLR ’17, Plappert et al. ‘17)

• options & hierarchy (Kulkarni et al. NIPS ’16, Vezhnevets et al. NIPS ’16, Bacon 
et al. AAAI ’16, Heess et al. ‘17, Vezhnevets et al. ICML ’17, Tessler et al. AAAI 
’17)

• leveraging stochastic policies for better exploration (Florensa et al. ICLR ’17, 
Haarnoja et al. ICML ’17)

• auxiliary objectives (Jaderberg et al. ’17, Shelhamer et al. ’17, Mirowski et al. 
ICLR ’17)



6. Is DRL a good choice for a task?



7. Imperfect-information 
games and multi-agent 
games

• No-limit heads up Texas Hold’Em

• Libratus (Brown et al, NIPS 2017) 

• DeepStack (Moravčík et al, 2017)

Refer to Prof. Bo An’s talk



Opportunities

Improve robustness (e.g., w.r.t random seeds 
and across tasks)

Improve learning efficiency

Better optimization

Define reward in practical applications

Identify appropriate tasks

Imperfect information and multi-agent 
games



Applications



Game

Robotics

TradingHealthcare NLP

Education

Neuro Science

Control

Music & Movie



Game

• RL for Game
• Sequential Decision Making

• Delayed Reward

TD-Gammon Atari Games



Game

• Atari Games
• Learned to play 49 games for the Atari 2600 game console, without labels or 

human input, from self-play and the score alone

• Learned to play better than all previous algorithms and at human level for 
more than half the games

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf


Game

• AlphaGo 4-1

• Master(AlphaGo++) 60-0

)

http://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

CNN

Value Network Policy Network

http://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf
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Neuro Science

The world presents animals/humans with a huge reinforcement learning problem 
(or many such small problems)



Neuro Science

• How can the brain realize these? Can RL help us understand the 
brain’s computations? 

• Reinforcement learning has revolutionized our understanding of 
learning in the brain in the last 20 years.
• A success story: Dopamine and prediction errors

Yael Niv. The Neuroscience of Reinforcement Learning. Princeton University. ICML’09 Tutorial

http://www.princeton.edu/~yael/ICMLTutorial.pdf


What is dopamine?

• Parkinson’s Disease

• Plays a major role in reward-motivated 
behavior as a “global reward signal” 
• Gambling

• Regulating attention

• Pleasure



Conditioning

• Pavlov’s Dog



Dopamine



Dopamine
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Music & Movie

• Music
• Tuning Recurrent Neural Networks with Reinforcement Learning

• LSTM v.s. RL tuner

https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning/

https://youtu.be/cDcsOokicLw
https://youtu.be/abBfZB5DlSY
https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning/


Music & Movie

• Movie
• Terrain-Adaptive Locomotion Skills Using Deep Reinforcement Learning

Peng X B, Berseth G, van de Panne M. Terrain-adaptive locomotion skills using deep reinforcement learning[J]. 

ACM Transactions on Graphics (TOG), 2016, 35(4): 81.

https://youtu.be/KPfzRSBzNX4
http://dl.acm.org/citation.cfm?id=2925881


Game
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HealthCare

• Sequential Decision Making in HealthCare



HealthCare

• Artificial Pancreas

Bothe M K, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas[J]. 

Expert review of medical devices, 2013, 10(5): 661-673.

http://www.tandfonline.com/doi/full/10.1586/17434440.2013.827515?needAccess=true
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Trading

• Sequential Decision Making in Trading



Trading

• The Success of Recurrent Reinforcement Learning(RRL)
• Trading systems via RRL significantly outperforms systems trained using 

supervised methods.

• RRL-Trader achieves better performance that a Q-Trader for the S&P 500/T-
Bill asset allocation problem.

• Relative to Q-Learning, RRL enables a simple problem representation, avoids 
Bellman’s curse of dimensionality and offers compelling advantages in 
efficiency.

Learning to Trade via Direct Reinforcement. John Moody and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No 4, July 2001.

http://people.idsia.ch/~juergen/rnnaissance2003talks/MoodySaffellTNN01.pdf


Trading

• Special Reward Target for Trading: Sharpe Ratio

• Recurrent Reinforcement Learning
• specially tailored policy gradient

Learning to Trade via Direct Reinforcement. John Moody and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No 4, July 2001.

http://people.idsia.ch/~juergen/rnnaissance2003talks/MoodySaffellTNN01.pdf


Game

Robotics

TradingHealthcare NLP

Education

Neuro Science

Control

Music & Movie



Natural Language Processing

• Conversational agents

Li J, Monroe W, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[J]. arXiv preprint arXiv:1606.01541, 2016.

https://arxiv.org/pdf/1606.01541v4.pdf




Machine Translation with Value Network

• Decoding with beam search algorithm
• The algorithm maintain a set of candidates, which are partial sentences

• Expand each partial sentences by appending a new word

• Select top-scored new candidates based on the conditional probability P(y|x)

• Repeat until finishes  

emb

LSTM/GRU

emb

LSTM/GRU

emb

LSTM/GRU c

Encoder

I love China

我(I)

爱
(Love)

你

喜欢 中国

中国
(China)

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, and Tie-Yan 
Liu, Decoding with Value Networks for Neural Machine 
Translation, NIPS 2017.



Value Network- training and inference

• For each bilingual data pair (x,y), and a translation model from X->Y
• Use the model to sample a partial sentence yp with random early stop

• Estimate the expected BLEU score on (x, yp )

• Learn the value function based on the generated data

• Inference : similar to AlphaGo
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Robotics

• Sequential Decision Making in Robotics



Robotics

• End-to-End Training of Deep Visuomotor Policies

Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies[J]. Journal of Machine Learning Research, 2016, 17(39): 1-40.

https://youtu.be/CE6fBDHPbP8
https://arxiv.org/pdf/1504.00702.pdf
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Education

• Agents making decisions as interact with students

• Towards efficient learning



Education

• Personalized curriculum design
• Given the diversity of students knowledge, learning behavior, and goals.

• Reward: get the highest cumulative grade

Hoiles W, Schaar M. Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum 

Design[C]//Proceedings of The 33rd International Conference on Machine Learning. 2016: 1596-1604.

http://www.jmlr.org/proceedings/papers/v48/hoiles16.pdf
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Control

Inverted autonomous helicopter flight via reinforcement learning, by Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, 
Jamie Schulte, Ben Tse, Eric Berger and Eric Liang. In International Symposium on Experimental Robotics, 2004.

Stanford Autonomous Helicopter Google's self-driving cars 

http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
https://youtu.be/VCdxqn0fcnE
https://www.youtube.com/watch?v=TsaES--OTzM
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Our Research

Dual Learning

Light Machine 
Learning

Machine 
Translation

AI for verticals

AutoML

DRL

• Enhance all industries (e.g., finance, insurance, logistics, 
education…) with deep learning and reinforcement learning

• Collaboration with external partners

• Advanced learning/inference 
strategies

• New model architectures
• Low-resource translation

• Robust and efficient algorithms
• Imperfect-information games

• LightRNN, LightGBM, LightLDA,
LightNMT

• Reduce the model size, improve the 
training efficiency

• Self-tuning/learning machine
• Reinforcement learning for 

hyper parameter turning and 
training process automation

• Leverage symmetric structure of AI tasks to 
enhance learning

• Dual learning from unlabeled data, dual 
supervised learning, dual inference



We are hiring!
Welcome to join us!!!

taoqin@microsoft.com

http://research.microsoft.com/users/taoqin/



Thanks!
taoqin@Microsoft.com


