SR ST E T

Ri%

AR IV M AT 53 e

Outline

e General introduction

* Basic settings

* Tabular approach

* Deep reinforcement learning

* Challenges and opportunities

* Appendix: selected applications

General Introduction

Machine Learning

WIKIPEDIA

' ' The Free Encyclopedi
Machine learning explores the study and e B

construction of algorithms that can learn from
and make predictions on data

Supervised Learning

EAR | EfFhR

') ccl 2018 jo

Zid)y U FA 1aE &

e Learn from labeled data

* Classification, regression, ranking

SRS TR, WHREIER? BRI SR EFE R

5,990,000 &R FIEANIR ~

FTtEPEHRESFAS (CCL2018) RESNEET ..
2018-9-18 - “E+HEPEITEIESZHAKS" (The Seventeenth China National Conference on
Computational Linguistics, CCL 2018) 5F20185F108190—21BEEDIET ...
www.cips-cl.org/static/CCL2018/index.html +

Leadership Development Results That Matter | CCL gzt
2018-10-11 - Discover CCL's global leadership development research and solutions for you, your team,
your business and the world.

https://www.ccl.org «

2018 CONCACAF Champions League - Wikipedia siztm | sxmm

Runners-up: Toronto FC Champions: Guadalajara (2nd title)
Dates: February 20 — April 25, 2018 Teams: 16 (from 8 associations)

2018-10-6 - The 2018 CONCACAF Champions League (officially the 2018 Scotiabank CONCACAF
Champions League for sponsorship reasons) was the 10th edition of the CONCACAF Champions League
under its current name, and overall the 53rd edition of the premier football club competition organized by
CONCACAF, the regional governing body of North America, Central ...
https://en.wikipedia.org/wiki/2018_CONCACAF_Champions_League «

Unsupervised Learning

e Learn from unlabeled Scientific Literature - 6 — A Xzsoaﬁdemicseargza
data, find structure (10M papers)

from the data

E | ' . ° Computer Science
* Clustering » \/ = o @ athematic
* Dimension reduction o 3 s 2 @ i
e - a7 i & @ - v o Economics
| I /;, , i o _/e ; e Biology
e " L T e .
St WA \ e Chemistry
/ N
l \;‘ 0 Medicine

Reinforcement Learning

The idea that we learn by interacting with our environment is
probably the first to occur to us when we think about the
nature of learning....

Reinforcement learning problems involve learning
what to do - how to map situations to actions - so as to
maximize a numerical reward signal.

Reinforcement Learning

* Agent-oriented learning-learning by interacting with an environment
to achieve a goal
e Learning by trial and error, with only delayed evaluative feedback(reward)

* Agent learns a policy mapping states to actions
* Seeking to maximize its cumulative reward in the long run

Agent
| State, Reward, Action,
SFumu!us, Gain, Payoff, Response,
Situation Cost Control
Environment |g¢——

(world)

Engineering

Computer Science

Neuroscience

Psychology

RL vs Other Machine Learning

e Supervised learning
* Regression, classification,

ranking, ... : :
_ , Internal state reward
* Learning from examples, learning ?,
from a teacher :
: : l environment
* Unsupervised learning - e S

* Dimension reduction, density
estimation, clustering

* Learning without supervision

learning rate o
inverse temperature
discount rate y

* Reinforcement learning
e Sequential decision making

 Learning from interaction, observation
learning by doing, learning from
delayed reward

One-shot Decision v.s Sequential Decisions

e Agent Learns a Policy * Supervised Learning

/(- ~==4%)= “How are you”

|
state — \;J — action

s
1)= “Cat”
* Reinforcement Learning
ff_i’J ff_i’J
ks s
move move

When to Use Reinforcement Learning

* Second order effect : your output (action) will influence the data
(environment)

* Web click : You learn from your observed CTRs, if you adapt a new ranker, the
observed data distribution will change.

 City traffic : You give a current best strategy to the traffic jam, but it may cause larger
jam in other place that you don’t expect

* Financial market

e Tasks : You focus on long-term reward from interactions, feedback
* Job market

e Psychology learning : understanding user’s sequential behavior

* Social Network : why does he follow this guy, for linking new friends, for own
interests

First convergent TD algorithm with

Reinforcement > function approximation
learning with 2008
> neural network
1985 DeepMind's
) Alpha DON
Q learning and TD(lambda) 2015
1989
The beginning, by R. Bellman, C. Shannon, DeepMind's
> Minsky Temporal difference learning TD-Gammon (Neural Network) > Alpha Go
1955 1981 1995 2016

1955

Today

B2 Microsoft

RL has achieved a wide of success across different
applications.

Basic Settings

Reinforcement Learning

a set of environment states S;
a set of actions A;
rules of transitioning between states;
rules that determine the scalar immediate
reward of a transition; and
rules that describe what the agent
Agent observes.

State s;

Reward 13
Observation oy

Action a;_

=

\ 4

o O0DpoO00

Goal: Maximize expected long-term payoff

Example Applications

Playing Go Where to place a
(boardgame) stone

Win game: +1

Configuration of board Configuration of board Else: -1

.
¢

Example Applications

PRI (€ AU R Configuration of board Configuration of board Win game: +1
(boardgame) stone Else: -1
Playing Atari Joystick and button Screen at time ¢ Screen at times Game score increment

(video games) inputs t t-1, t-2, t-3

Example Applications

PRI (€ AU R Configuration of board Configuration of board Win game: +1
(boardgame) stone Else: -1
P.Iaylng Atari JOVStIC!(and button Screen at time ¢ Screen at times Game score increment
(video games) inputs t t-1, t-2, t-3
What to say to the History of the LEE SETIIE R AR

Task fail: -20
Else: -1

What user says

Conversational system :
user conversation

Markov Chain

 Markov state
P(St+1|51) ---:St) — P(St+1|St)

@P(5t+1|5t) @P(st+1|5t)@

Andrey Markov

Markov Decision Process

S¢. state

0¢: observation
a;: action

T¢: reward

CODO

Markov Decision Process

ABCDEFGHJKLMNOPQRST

* Fully observable environments =2 Markov
decision process (MDP)

Ot = St

e
RUTHERFORp
o EST. 1051 e

Texas Hold’em Poker

* Partially observable environments = partially Tuesdays from 7:00pm
observable Markov decision process (POMDP) 7

O + S¢

Markov Decision Process

* A Markov Decision Process(MDP) is a tuple: (§,A, P, R, v)
« Sis a finite set of states
« Ais afinite set of actions
* P is state transition probability
p(s'|s,a) = Pr{S;,1=5"| S;=s, A;=a}
* R is reward function
r(s,a,s') =E[Ry1 | Si=s,A;=a,Si1 =]
* yis a discount factor y € [0,1]
* Trajectory.
* W SpAp Rer1, St Aer s Revz) Stz oo

Policy

* A mapping from state to action
* Deterministic a = m(s)
* Stochastic p =mn(s,a)

* Informally, we are searching a policy to maximize the discounted sum
of future rewards:

to choose each A; to maximize Rij1 4+ YRei2 + 7 Repz + -+

Action-Value Function

* An action-value function says how good it is to be in a state, take an
action, and thereafter follow a policy:

qW(Sv a):]E[Rt—l—l + fYRH—Q + ’)/2Rt—|—3 -+ .. ‘ StZS, At:a, At—l—l:oo NW}

g S

Delayed reward is taken into consideration.

Action-Value Function

* An action-value function says how good it is to be in a state, take an
action, and thereafter follow a policy:

qW(Sv a):]E[Rt—l—l + fYRH—Q + ’)/2Rt_|_3 -+ .. ‘ St:S, At:a, At—l—l:oo NW}

g S

Delayed reward is taken into consideration.

e Action-value functions decompose into Bellman expectation
equation.

qﬂ(sv a):]E Rt+1—|-’Yq7r(5t+1aAt+1) St=s,Ar=a,Arp1~T

Optimal Value Functions

* An optimal value function is the maximum achievable value.
gr.(s,a) = max g-(s,a) = g.(s, a)
* Once we have g, we can act optimally,
T«(s) = arg max g«(s, a)

e Optimal values decompose into Bellman optimality equation.

q«(s,a) = E|Rey1 + v max qu(St41, a') St:s,At:a]
d

Review: Major Concepts of a RL Agent

* Model: characterizes the environment/system
e State transition rule: P(s’|s, a)
* Immediate reward: (s, a)

* Policy: describes agent’s behavior
* a mapping from state to action, m: S = A
* Could be deterministic or stochastic

* Value: evaluates how good is a state and/or action
* Expected discounted long-term payoff

* U (S) = Epres1 + Yrean + ViTeaz + oo IS = 5]
* 4r(s,a) = Eg[teq1 + VTiqn F Vo Teaz + ISt = s,a; = a]

Tabular Approaches

Learning and Planning

* Two fundamental problems in sequential decision making

* Planning:
A model of the environment is known

* The agent performs computations with its model (without any external
interaction)

* The agent improves its policy
* a.k.a. deliberation, reasoning, introspection, pondering, thought, search

* Reinforcement learning:
* The environment is initially unknown
* The agent interacts with the environment
* The agent improves its policy, with exploring the environment

Recall: Bellman Expectation Equation

e State-value function
Up(S) = Efdrisr T VTea2 + Y Tey3 + 0 |S}
= Eplris1 + yve(s)ls]
= r(s, n(s)) +y 2 P(s'|s, m(s))v(s")

Vg =17 T YPvy

e Action-value function Richard Bellman
CIn(S» Cl) — Eﬂ'[rt+1 T yqn(sl' a’)|s, a]

Planning (Policy Evaluation)

Given an exact model (i.e., reward function, transition probabilities,), and a
fixed policy T

Algorithm:
Arbitrary initialization: v,
Fork =0,1,2, ...
v+l = 4+ yP vk
Stopping criterion: |[vEt1 —pk| <€

Recall: Bellman Optimality Equation

* Optimal value function
* Optimal state-value function: v,(s) = max v,.(s)
T

* Optimal action-value function: q.(s,a) = maxq.(s, a)
T

* Bellman optimality equation
* 1,(s) = maxq.(s,a)
a

* q.(s,a) = R§ +y Ly Piovi(s")

Planning (Optimal Control)

Given an exact model (i.e., reward function, transition probabilities)

Value iteration with Bellman optimality equation :
Arbitrary initialization: g,
Fork =0,1,2, ...
Vs €S,a €A qgi1(s,a) =71(s,a) +y Xaes P(S's, a)rrzle}qu(s’, a)

Stopping criterion: max |qi+1(s,a) — g (s,a)| <€
SES,a€A

Learning in MDPs

* Have access to the real system but no model

* Generate experience 04,a4,7¢,02,05,1>, ..., 0¢_1,A¢_1, ¢—1, Ot

* Two kinds of approaches
* Model-free learning
* Model-based learning

Monte-Carlo Policy Evaluation

* To evaluate state s
 The first time-step t that state s is visited in an episode,
* Increment counter N(s) = N(s) + 1

* Increment total return S(s) = S(s) + G:

S(s)
N(s)

* By law of large numbers, V (s) - v«(s) as N(s) — oo

* Value is estimated by mean return V (s) =

Incremental Monte-Carlo Update

iy 2o)

= — (xk + (k — Dpg—1)
1
= Ug—1 T T (X — Ug-1)

For each state s with return G;: N(s) « N(s) + 1

V(s) < V(s) + % (G, V(s))

Handle non-stationary problem: V(s) « V(s) + a(G; — V(s))

Monte-Carlo Policy Evaluation

v(sy) « v(sy) + alG — v(s,)]
G¢ is the actual long-term return following state s; in a sampled trajectory

Monte-Carlo Reinforcement Learning

* MC methods learn directly from episodes of experience
* MC is model-free: no knowledge of MDP transitions / rewards

 MC learns from complete episodes

* Values for each state or pair state-action are updated only based on final
reward, not on estimations of neighbor states

* MC uses the simplest possible idea: value = mean return
e Caveat: can only apply MC to episodic MDPs

* All episodes must terminate

Temporal-Difference Policy Evaluation

Monte-Carlo : v(s;) <« v(s;) + a[G, — v(s,)]

TD: v(s) « v(sp) + alreyq + yv(sesq) — v(se)]
1¢ is the actual immediate reward following state s; in a sampled step

O () » ti [\ ® o ()
N TR ,’ TR 1 / N
Yo \\ : / \ I 7 \ I / \

Temporal-Difference Policy Evaluation

 TD methods learn directly from episodes of experience

* TD is model-free: no knowledge of MDP transitions / rewards
* TD learns from incomplete episodes, by bootstrapping

* TD updates a guess towards a guess

* Simplest temporal-difference learning algorithm: TD(0)
* Update value v(s;) toward estimated return r;,; + yv(s;;1)
v(se) = v(se) + a(reyq + yv(Sesq) —v(se))
* 7141 + YV (Ss41) is called the TD target
* 8 = 1441 + YU(St41) — v(Sy) is called the TD error

MC

Comparisons

V(S:) < V(5¢) + a (Gt — V(S:))

V(St) — V(Sr) + (Rt_|_1 + ’YV(SH_]_) - V(St))

9
QO O O O
Q O () Q () Q ® O Q0
’ \" : j_.t \ : , I \\ : r} \\ : ; \\ ,:, \\

V(St) < Ex [Rey1 + v V(St41)]

S

Policy Improvement

m Greedy policy improvement over V(s) requires model of MDP

7'(s) = argmax R2 + P2, V(s')
ac A

m Greedy policy improvement over Q(s, a) is model-free

7'(s) = argmax Q(s, a)
acA

Policy Iteration

Starting
Q. m

(s, Tk

Policy evaluation Monte-Carlo policy evaluation, @ = g

Policy improvement Greedy policy improvement?

e-greedy Exploration

m Simplest idea for ensuring continual exploration
m All m actions are tried with non-zero probability
m With probability 1 — € choose the greedy action

m With probability € choose an action at random

acA

e/m+1—¢ if a* =argmax Q(s, a)
m(als) = _
e/m otherwise

Monte-Carlo Policy Iteration

Starting
T

2

Qs Tk

Policy evaluation Monte-Carlo policy evaluation, Q = g,

Policy improvement e-greedy policy improvement

Monte-Carlo Control

q*: T

Every episode:
Policy evaluation Monte-Carlo policy evaluation, @ =~ g,

Policy improvement e-greedy policy improvement

MC vs TD Control

* Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)
* Lower variance
* Online
* Incomplete sequences

* Natural idea: use TD instead of MC in our control loop
* Apply TD to Q(S; A)
* Use e-greedy policy improvement
* Update every time-step

Model-based Learning

* Use experience data to estimate model

 Compute optimal policy w.r.t the estimated model

Summary to RL

Planning Policy evaluation For a fixed policy Value iteration, policy
Optimal control Optimize Policy iteration

Model-free learning Policy evaluation For a fixed policy Monte-carlo, TD learning
Optimal control Optimize Policy

Model-based learning

Large Scale RL

* So far we have represented value function by a lookup table
* Every state s has an entry v(s)
* Or every state-action pair s, a has an entry q(s, a)

* Problem with large MDPs:
* Too many states and/or actions to sore in memory
* Too slow to learn the value of each state (action pair) individually

 Backgammon: 10%° states
* Go: 10179 states

Solution: Function Approximation for RL

 Estimate value function with function approximation

* U(s;0) = v (s)org(s,a;0) = q(s,a)
* Generalize from seen states to unseen states
* Update parameter 6 using MC or TD learning

* Policy function
* Model transition function

Deep Reinforcement Learning

Deep learning . Value based . Policy gradients
Actor-critic . Model based

Deep Learning Is Making Break-through!

C | @

blogs microsoft.com

nnnnnnnnn

Historic Achievement: Microsoft
researchers reach human parity in
conversational speech
recognition

AT R A TR = AR 5
3R, LT B F R
AiE T ARG KF

ImageNet Winners and Errors (%)

6.7 7.3
= = 0 1
m N

Microsoft Human GoogleNet Oxford
2015 2014 2014

=
‘“, '
e IMAGE
o B
25.8
16.4
11.7
NYU U Toronto 2011
2013 2012

2016410, %3R89 +%
B AfiE#AE L, A F] 759%68 %
AR R, BARIIFE A LM L6

A A

00:10:29

00:01:00

M BSENRFZRE, IR
[EIENIRIA AN R KF

78l) 2018-03-15 camel AlIfH%ITFIL

HIFEAE—IEER, EBERE—M

AIRRITIRHE: 14 B8, FRILMHARR
S5FBEMARNARARER, HARH
#MRERETERAMBAHKRENLE
newstest2017 BYP-RNHE L, EETAS
AIERBRAKFE; XREINEMEREN
EZRENERE LA LILLB A TEIRHEIR
R4,

Deep Learning

hidden layer 1 hidden layer 2 hidden layer 3

Faput fayet e Deep learning (deep machine learning, or deep structured

SN, o\ learning, or hierarchical learning, or sometimes DL) is a

branch of machine learning based on a set of algorithms

that attempt to model high-level abstractions in data by

using model architectures, with complex structures or

otherwise, composed of multiple non-linear
transformations.

2012: Distributed deep learning 2015: Open source tools: MxNet,
1974: Backpropagation 1997: LSTM-RNN (e.g., Google Brain) TensorFlow, CNTK
p t
1958: Birth of Late 1980s: convolution neural 2006: Unsupervised pretraining 2013: DQN for deep
Perceptron and neural networks (CNN) and recurrent neural for deep neutral networks reinforcement learning

networks networks (RNN) trained using
backpropagation

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_transformation

Driving Power

* Big data: web pages, search logs,
social networks, and new
mechanisms for data collection:
conversation and crowdsourcing

* Deep models: 1000+ layers, tens * Big computer clusters: CPU
of billions of parameters clusters, GPU clusters, FPGA farms,

provided by Amazon, Azure, etc.

Value based methods: estimate value
function or Q-function of the optimal
policy (no explicit policy)

Nature 2015
Human Level Control Through Deep
Reinforcement Learning

Representations of Atari Games

* End-to-end learning of values Q (s, a) from pixels s
* Input state s is stack of raw pixels from last 4 frames
* Qutputis Q(s, a) for 18 joystick/button positions

* Reward is change in score for that step

32 4x4 filters Fully-connected linear
output layer

256 hidden units

| 6 8x8 filters

4x84x84

Stack of 4 previous _ Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Value Iteration with Q-Learning

Represent value function by deep Q-network with weights 6

Q(s,a;0) = Q™(s,a)

Define objective function by mean-squared error in Q-values

L(B) =E

(7” +ymaxQ(s’,a’;0) —Q(s, a; 9))2]

Leading to the following Q-learning gradient

dL(6)
—_—_— E
a0

(r + ymaxQ (s",a";0) —Q(s, a; 9)) Py

9Q(s, a; 9)]

Optimize objective end-to-end by SGD

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

e Data is sequential
* Successive samples are correlated, non-iid

* Policy changes rapidly with slight changes to Q-values
* Policy may oscillate
* Distribution of data can swing from one extreme to another

Deep Q-Networks

* DQN provides a stable solution to deep value-based RL

* Use experience replay
* Break correlations in data, bring us back to iid setting
e Learn from all past policies
* Using off-policy Q-learning

* Freeze target Q-network
* Avoid oscillations
* Break correlations between Q-network and target

Deep Q-Networks: Experience Replay

To remove correlations, build data-set from agent's own experience
* Take action at according to e-greedy policy

* Store transition (s¢, a¢, T¢41, Sg+1) in replay memory D

* Sample random mini-batch of transitions (s, a,r,s’) from D

* Optimize MSE between Q-network and Q-learning targets, e.g.

L(B) =E

s,ar,s' ~D

(r +ymaxQ(s',a’; 0) — Q(s, a; 9))2]

Deep Q-Networks: Fixed target network

To avoid oscillations, fix parameters used in Q-learning target
* Compute Q-learning targets w.r.t. old, fixed parameters 6~

r+ yma}xQ(s’,a’; 67)
* Optimize MSE between Q-network and Q-learning targets

L(B) =E

s,a,r,s' ~D

(r +ymaxQ(s',a’;07) — Q(s, a; 6))2]

* Periodically update fixed parameters 6~ < 60

43 games are better than state-of-art results

29 games achieves 75% expert score

Of 49 Atari games

Experiment

%000 %0001 %009 %005 %00 %00€ %00¢ %001 %0

| L)L | | | l] |
tl

%0 | abuansy seuwnzajuop
%S || seiness
e o[syasoy
wL|| spossisy
%EL || uewoed ‘s
%l | Buimog
S| wung signog
%SZll| 1senbesg
%ze | aimusp
%zy B | uely
%ey | sepruy
%S | prey seny
%S | 1sioH yueg
%29 | spadiua)
wv9 | puewwo? Jeddoyn
%9 | som jo prezm
%9 | suoz apeg
JoAD}-UBWAY MOJoq %69 I | xusisy
3AOQE JO [aA3]-UBWINY JR % L | OYIH
%eL L) [wea.0
%eL [l 11| AexooH 89|
%26 E | umog puedn
%ee D) [Aq:eq Buiusiy
%6 1| onpu3
%004 [T | 1011 BwiL
w20l | Aemealy
%Z0} R seisepy n4-Buny
wzo | wewjueiny
wett L 1| sepry weeg
sz Y | ssepenv) soedg
%zer L | 6uod
%svl [T [puog sawer
wert | swuel
ez [| cosebuey
%ZeZ (]| seuuny peoy
%oz I | wnessy
([}
aWes) SIy | SWeN
HOBRY Uow=d
Jaydog)
sequi Azei
snueny
JUEJ0goY
18UUNY JBIg
inoyea.g
Buixog
[equid 08pIA

Q-learning

Q-learning

+ Target Q

Q-learning
+ Replay

Q-learning
+ Replay
+ Target Q

Breakout

10

241

317

Enduro

142

831

1006

River Raid

2868

4103

7447

Seaquest

1003

823

2894

Space Invaders

373

826

1089

Other Tricks

* DQN clips the rewards to [-1; +1]
* This prevents Q-values from becoming too large
* Ensures gradients are well-conditioned

e Can’t tell difference between small and large rewards
* Better approach: normalize network output
* e.g. via batch normalization

Extensions

* Deep Recurrent Q-Learning for Partially Observable MDPs
* Use CNN + LSTM instead of CNN to encode frames of images

* Deep Attention Recurrent Q-Network

e Use CNN + LSTM + Attention model to encode frames of images

/ / 512 Q(Sa a-)t Q(S a-)t—i—l
Conv3 T h’t: Ct T
O-filers 64 LSTM LSTM
Stride 1
7’ Zt Zt41
C01_1v2 }
jtﬁiler.\ 4 |:q:| l-t q:l
Stride 2 - -
5 9
C comi Ut Vt41
=l 32(-][1]'1;er\ = 32
8x8
Il L % CNN CNN
20

= / = / ; ey

Policy gradients: directly
differentiate the objective

Gradient Computation

g* = arg méix Erwpg(r) [Z T(St, at)]

t

7(6)

J(0) = Errorp(r)lr(7)] = /TTQ(T)?“(T)dT
LT_J

T
> (s, ay)
t=1

Vo (0) = [Vomg()r(r)dr = f mo(T) Vo logmg(7)r(r)dr = Errry(r)[Ve log mo(r)r(7)]

Policy Gradients

* Optimization Problem: Find 6 that maximizes expected total reward.
* The gradient of a stochastic policy mg(als) is given by

VoJ (7o) = Esnpr anmy [V logmo(als)Q7 (s, a)]
* The gradient of a deterministic policy a = ug(s) is given by

Vod(ug) = Esnpn [V‘?“@(S) VaQ" (s, a)|a=ue(s)]

* Gradient tries to
* Increase probability of paths with positive R
* Decrease probability of paths with negative R

REINFORCE

* We use return v; as an unbiased sample of Q.
V=TTt

function REINFORCE
Initialise 6 arbitrarily
for each episode {s1,a1,r,...,sT_1,ar_1,rr} ~ 7y do
fort=1to T —1do
0 < 0+ aVglog my(st, ar)ve
end for
end for
return ¢
end function

* high variance

* |imited for stochastic case

Actor-critic: estimate value function
or Q-function of the current policy,
use it to improve policy

function REINFORCE
Initialise € arbitrarily

Actor-Critic for each episode {s1, a1, r2, ..., 5T-1,a7-1, 7} 1

fort=1to T —1do
0« 0 + C}fvg |Og ﬂ'g(sh ar)Vt
 We use a critic to estimate the action- end for

. df
value function end for
return 6

QW(S} a) > Qﬂe(S} a) end function

Actor

e Actor-critic algorithms

* Updates action-value function parameters Critic
» Updates policy parameters 9, state [— Fl\fr?(':‘:g) actior
in direction suggested by critic 7

reward

{ Environment j«

Review

* Value Based
* Learnt Value Function
* Implicit policy
* (e.g. e-greedy)
* Policy Based
* No Value Function
* Learnt Policy

e Actor-Critic
e Learnt Value Function
* Learnt Policy

Model based DRL

* Learn a transition model of the environment/system
P(r,s'|s,a)
* Using deep network to represent the model
» Define loss function for the model
* Optimize the loss by SGD or its variants

* Plan using the transition model
* E.g., lookahead using the transition model to find optimal actions

Model based DRL: Challenges

* Errors in the transition model compound over the trajectory
* By the end of a long trajectory, rewards can be totally wrong
* Model-based RL has failed in Atari

Challenges and Opportunities

1. Robusthess — random seeds

episode_reward/test

-100

-300

-000

-700

20.00k ©60.00k 100.0k 140.0k 180.0k

1. Robusthess — random seeds

HalfCheetah-vl (DDPG, Different Random Seeds)

40001

c .
3000
-
J
=
+ iy
q-) L [h) A 'q"-’ 1 +
AR '". f VAN r“‘ ! ‘\u*.!‘ ; L r"‘ f‘\'ﬁ‘ A N \ / ik
e g -"w"r/ NN S ATV S R AT VTS LR & e AN
¢ I \, & . L 1, I r Y "I
quD 20001 i - y ‘ v oY ‘ WM (WA
r
OJ L"
C /
| - /
o .'
> i
Z 1000, | |
I
,l'
/
!
-===Random Average (5 runs)

o

Random Average (5 runs)

.75 2.00
% 106

1.50

0.00 025 050 0.75 1.00 1.25
Timesteps

2. Robustness — across

task

HalfCheetah Environment

300+
2507

Average Return

6000 -
5000
e
E 4000 T ,”‘m*‘v‘n’.\, NI‘\P,_J".Q.V".’ I
(D) ~
oz 3000- "'A._..‘]-'-fl‘l
0) J\f‘u
20 oI\ e TR e
S 2000 NAASY L Wtk 1 B wnqip e [I
3] ™My IR et
s i fug=m ™
<C 1000+ ek Rrc-TRumm—————CCTVY T 0
i L#7 I
0- ; __".,,_,(.'.__.-' // _____
—1000 1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.7

Timesteps

e10)
®
o 1000
>
<
01

Jwimmer cnvironment

(]
-
]

"""" —— TRPO

hy' Le{ o Al l"-“.‘.&[ﬁ’...)v»(%ubw M”"\a-v'(;,-ﬁ-,--r r-.*:,--;-;-‘;-,- e PPO

.......... DDPC
.......... ACKTR
0.00 0.2 50 075 1.00 125 150 175 2.00
Timesteps x10°

Hopper Environment

>3 o BY sniethe '*\f ?-’ ’_‘V‘/;‘m ey 5‘4';' -*‘:.',,'.\AQ
f_.‘.:_/' i I ,;‘..,:\?' ¥ ‘)P‘ "\ :- ‘_: {"’."‘..,w‘ :
" :'; File ““":" '-:."
n i
" }&‘a. .?9"‘ ""“’l,t"! iy Mt,,.. "‘r"'r !
A T Y — " TRPO
N o P T 1 T] - PPO
o
a1 L A R DDPG
.......... ACKTR
0.00 0.2 50 075 1.00 125 150 1.75 2.00
Timesteps x1

* ResNet performs pretty well on various kinds of
tasks

* Object detection
Image segmentation
Go playing

Image generation

3. Learning - sample
efficiency

e Supervised learning
* Learning from oracle

* Reinforcement learning
* Learning from trial and error

[N LN W RS LR WY [

[NAY AN]

200%

100%

0%

DQN

DDQN

Prioritized DDQN

Dueling DDQN ;\/
A3C

Distributional DQN

Noisy DQN aa >

Rainbow /\f

|
100 20
Millions of frames

Multi-task/transfer learning

* Humans can’t learn individual complex tasks from scratch.
* Maybe our agents shouldn’t either.

* We ultimately want our agents to learn many tasks in many
environments

 learn to learn new tasks quickly (Duan et al. 17, Wang et al. 17, Finn et al.
ICML’17)

* share information across tasks in other ways (Rusu et al. NIPS '16,
Andrychowicz et al. ‘17, Cabi et al. 17, Teh et al. ’17)

* Better exploration strategies

4. Optimization — local optima

5. No/sparse reward

Real world interaction:

e Usually no (visible) immediate reward for each action
e Maybe no (visible) explicit final reward for a sequence of actions
e Don’t know how to terminate a sequence

Consequences:

e Most DRL algos are for games or robotics
e Reward information is defined by video games in Atari and Go
e Within controlled environments

e Scalar reward is an extremely sparse sighal, while at the same time,
humans can learn without any external rewards.
 Self-supervision (Osband et al. NIPS ’16, Houthooft et al. NIPS ’16, Pathak et
al. ICML’17, Fu*, Co-Reyes* et al. ‘17, Tang et al. ICLR’17, Plappert et al. ‘17)

» options & hierarchy (Kulkarni et al. NIPS ’16, Vezhnevets et al. NIPS ’16, Bacon

et al. AAAI’16, Heess et al. ‘17, Vezhnevets et al. ICML 17, Tessler et al. AAAI
'17)

* leveraging stochastic policies for better exploration (Florensa et al. ICLR’17,
Haarnoja et al. ICML’17)

 auxiliary objectives (Jaderberg et al. ’17, Shelhamer et al. ’17, Mirowski et al.
ICLR "17)

6. 1s DRL a good choice for a task?

/. Imperfect-information
games and multi-agent

games

* No-limit heads up Texas Hold’Em
e Libratus (Brown et al, NIPS 2017)
* DeepStack (Moravcik et al, 2017)

Refer to Prof. Bo An’s talk

Improve robustness (e.g., w.r.t random seeds
and across tasks)

Improve learning efficiency

Better optimization

Opportunities

Define reward in practical applications

|dentify appropriate tasks

Imperfect information and multi-agent
games

Applications

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

Game

* RL for Game
e Sequential Decision Making
* Delayed Reward

-3 9 X
20 93 DX
20 93 DX
2D NS DX
2O N3 DX

A
bl
®
8
2
*

- e
B=
B

TD-Gammon Atari Games

-3 93 x

20 93 DX

Game

A
bl
*®
8
2
X

20 93 DX
20 NS DX
2D NI DX

e Atari Games

* Learned to play 49 games for the Atari 2600 game console, without labels or
human input, from self-play and the score alone

* Learned to play better than all previous algorithms and at human level for
more than half the games

to predictions

* of final score
for each of 18
joystick actions

mapping raw
screen pixels

T
o
€
£ I3 U4 3) B & b
+ 1+ B S s € . a
(o] [}] (=] [n] (=] B a

Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533.

https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf

Game | e

« AlphaGo 4-1 e
* Master(AlphaGo++) 60-0

Evaluation
<

CNN

Move probabilities

€

p, (als)

Value Network

Position

Policy Network
Position

Human expert

Supervised Learning
positions

Reinforcement Learning
policy network

Self-play data Value network
policy network

ST
55 D

Wselt Play _

http://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

http://icml.cc/2016/tutorials/AlphaGo-tutorial-slides.pdf

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

| FVE
. Microsoft
Neuro Science "

The world presents animals/humans with a huge reinforcement learning problem
(or many such small problems)

. o
. Microsoft
Neuro Science "

* How can the brain realize these? Can RL help us understand the
brain’s computations?

* Reinforcement learning has revolutionized our understanding of
learning in the brain in the last 20 years.

* A success story: Dopamine and prediction errors

Yael Niv. The Neuroscience of Reinforcement Learning. Princeton University. ICML'09 Tutorial

http://www.princeton.edu/~yael/ICMLTutorial.pdf

What is dopamine?

Dopamine
CgHﬂNOQ

HO

HO

|. Before Conditioning 2. Before Conditioning

>-d) |&-A

Neutral Ear Movemenit Unconditioned Salivation
Stimulus (Unconditioned Stimulus (Unconditioned
response unrelated Response)
to meat.)

3. During Conditioning 4. After Conditioning
~ r
,ﬁ!-‘y _ Conditioned Salivation
o Salivation Stimulus (Conditioned
(Unconditioned Response)

Response)

o

™
»
-
"

Oﬂ‘ﬂ.:

The idea: Dopamine

encodes a temporal
difference reward
prediction error

(Montague, Dayan, Barto mid 90’s)

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

B Microsoft

Music & Movie

* Music

* Tuning Recurrent Neural Networks with Reinforcement Learning
* LSTM v.s. RL tuner

https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning/

https://youtu.be/cDcsOokicLw
https://youtu.be/abBfZB5DlSY
https://magenta.tensorflow.org/2016/11/09/tuning-recurrent-networks-with-reinforcement-learning/

B Microsoft

Music & Movie

* Movie

Terrain-Adaptive Locomotion Skills using Deep
Reinforcement Learning

“

Xue Bin Peng, Glen Berseth, Michiel van de Panne
University of Biritish Columbia

Peng X B, Berseth G, van de Panne M. Terrain-adaptive locomotion skills using deep reinforcement learning[J].
ACM Transactions on Graphics (TOG), 2016, 35(4): 81.

https://youtu.be/KPfzRSBzNX4
http://dl.acm.org/citation.cfm?id=2925881

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

B Microsoft

HealthCare

* Sequential Decision Making in HealthCare

HealthCare

e Artificial Pancreas

Environment:
glucose-insulin

State:
(blood) glucose
level

Numerical reward
reflecting the

outcome of the
previous action

Action:

Insulin injection
or no treatment

B Microsoft

Agent:
decision for insulin

O0sage

Bothe M K, Dickens L, Reichel K, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas[J].

Expert review of medical devices, 2013, 10(5): 661-673.

http://www.tandfonline.com/doi/full/10.1586/17434440.2013.827515?needAccess=true

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

B Microsoft

Trading

e Sequential Decision Making in Trading

. == Microsoft
Trading e

* The Success of Recurrent Reinforcement Learning(RRL)

* Trading systems via RRL significantly outperforms systems trained using
supervised methods.

* RRL-Trader achieves better performance that a Q-Trader for the S&P 500/T-
Bill asset allocation problem.

* Relative to Q-Learning, RRL enables a simple problem representation, avoids

Bellman’s curse of dimensionality and offers compelling advantages in
efficiency.

Learning to Trade via Direct Reinforcement. John Moody and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No 4, July 2001.

http://people.idsia.ch/~juergen/rnnaissance2003talks/MoodySaffellTNN01.pdf

B Microsoft

Trading

* Special Reward Target for Trading: Sharpe Ratio

5 Average(Ry)
"™ Standard Deviation(R;)
* Recurrent Reinforcement Learning
« specially tailored policy gradient e

Reinforcement
Learning:

(6)
dU t (9) dU t th dF t n th d.F}J 1 :D ’grading - Profits/Losses
~ stem i \
dgt de' dF t dgt dF t— 1 th -1 . 0 Trades/ U(G)

Portfolio
Weights
Delay

dU t (9?5) Transaction
A gt =P dgt Costs

Learning to Trade via Direct Reinforcement. John Moody and Matthew Saffell, IEEE Transactions on Neural Networks, Vol 12, No 4, July 2001.

http://people.idsia.ch/~juergen/rnnaissance2003talks/MoodySaffellTNN01.pdf

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

. =™ Microsoft
Natural Language Processing -

* Conversational agents

¥ >
] . ! I /
Input Message © d}u q Turn 1 ‘# Turn 2 “w d}‘:‘»j Turn n
P) P
- Ll -
encode decode encode — decode 1 encode =) decode 1
m——» > _— | —— , T, ... o — P
P11 a @ n,1
. 1 .
B e I | T~ i,
How old are i . [} G
you? p— . — .
2)
P2—m— (@) —— 91 — --- S Py
® 2 ’
T~ dy — 3 p?x,?
Ul ; CJ :
) 3) 3
P 3= : s a1 — ... : _— Py
I'm 16, why are - ? | thought you - pn,?
you asking? . L . were 12. ».!.« .

Li J, Monroe W, Ritter A, et al. Deep Reinforcement Learning for Dialogue Generation[J]. arXiv preprint arXiv:1606.01541, 2016.

https://arxiv.org/pdf/1606.01541v4.pdf

Baseline mutual information model (Li et al. 2015) | Proposed reinforcement learning model
A: Where are you going? (1) A: Where are you going? (1)
B: I'm going to the restroom. (2) B: I'm going to the police station. (2)
A: See you later. (3) A: I'll come with you. (3)
B: See you later. (4) B: No, no, no, no, you’re not going anywhere. (4)
A: See you later. (5) A: Why? (5)
B: See you later. (6) B: I need you to stay here. (6)
A: I don’t know what you are talking about. (7)
A: how old are you? (1) A: How old are you? (1)
B:I'm 16. (2) B: I'm 16. Why are you asking? (2)
A: 167 (3) A I thought you were 12. (3)
B: I don’t know what you are talking about. (4) B: What made you think so? (4)
A: You don’t know what you are saying. (5) A: I don’t know what you are talking about. (5)
B: I don’t know what you are talking about . (6) B: You don’t know what you are saying. (6)
A: You don’t know what you are saying. (7)

Machine Translation with Value Network

* Decoding with beam search algorithm
* The algorithm maintain a set of candidates, which are partial sentences
* Expand each partial sentences by appending a new word
» Select top-scored new candidates based on the conditional probability P(y|x)
* Repeat until finishes

Value Network- training and inference

* For each bilingual data pair (x,y), and a translation model from X->Y
* Use the model to sample a partial sentence y, with random early stop
* Estimate the expected BLEU score on (x, y,)
* Learn the value function based on the generated data

* Inference : similar to AlphaGo

. 1 .
ol log P(y|x) > o X Tl log P(y|z) + (1 — a) x logv(x,y),
Y Y

1
1

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

. B\ ft
Robotics i YICTOsO

e Sequential Decision Making in Robotics

?&u‘m Oy MIST 7o
ENIUNI | wmssuctom

\

automatically

°
R O b O t I C S requires robot collect visual

pose data

initial
visual features

End-to-End Training of

Deep Visuomotor Policies

motor
torques

j, 7x7 conv fully

stride 2 connected & U
RelU linear S

rono
configuration
39

Levine S, Finn C, Darrell T, et al. End-to-end training of deep visuomotor policies[J]. Journal of Machine Learning Research, 2016, 17(39): 1-40.

https://youtu.be/CE6fBDHPbP8
https://arxiv.org/pdf/1504.00702.pdf

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

Education B Microso

* Agents making decisions as interact with students
* Towards efficient learning

Education B Microsoft

* Personalized curriculum design
* Given the diversity of students knowledge, learning behavior, and goals.
* Reward: get the highest cumulative grade

Hoiles W, Schaar M. Bounded Off-Policy Evaluation with Missing Data for Course Recommendation and Curriculum
Design[C]//Proceedings of The 33rd International Conference on Machine Learning. 2016: 1596-1604.

http://www.jmlr.org/proceedings/papers/v48/hoiles16.pdf

Neuro Science Music & Movie

Healthcare Trading

Robotics Education Control

Control B Microsoft

Stanford Autonomous Helicopter Google's self-driving cars

Inverted autonomous helicopter flight via reinforcement learning, by Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi,
Jamie Schulte, Ben Tse, Eric Berger and Eric Liang. In International Symposium on Experimental Robotics, 2004.

http://www.robotics.stanford.edu/~ang/papers/iser04-invertedflight.pdf
https://youtu.be/VCdxqn0fcnE
https://www.youtube.com/watch?v=TsaES--OTzM

References

* Recent progress
* NIPS, ICML, ICLR
* AAAI, 1JCAI

 Courses

* Reinforcement Learning, David Silver, with videos
Ettp:{]/wvlva.cs.ucI.ac.uk/staff/D.SiIver/web/Teac
Ing.htm

* Deep Reinforcement Learning, Sergey Levine, with
videos http://rll.berkeley.edu/deepricourse/

e Textbook

* Reinforcement Learning: An Introduction, Second
edition,Richard S. Sutton and Andrew G. Barto
http://www.incompleteideas.net/book/the-book-
2nd.html

Reinforcement
Learning

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://rll.berkeley.edu/deeprlcourse/
http://www.incompleteideas.net/book/the-book-2nd.html

Acknowledgements

e Some content borrowed from David Silver’s lecture
* My colleagues Li Zhao, Di He
* My interns Zichuan Lin, Guoqing Liu

* Leverage symmetric structure of Al tasks to

h I [
O u r Re S e a rC h . ([e)r;a?recaern?:;n;rnogm unlabeled data, dual

supervised learning, dual inference

Dual Learning

e S

Light Machine

LightRNN, LightGBM, LightLDA,
LightNMT

Learning * Reduce the model size, improve the
training efficiency

e Robust and efficient algorithms
* Imperfect-information games

Advanced learning/inference
Machine strategies .

Translation * New model architectures

* Low-resource translation

» Self-tuning/learning machine

* Reinforcement learning for AutoML
hyper parameter turning and
training process automation

Al for verticals

* Enhance all industries (e.g., finance, insurance, logistics,
education...) with deep learning and reinforcement learning
e Collaboration with external partners

B Microsoft

We are hiring!
Welcome to join us!!!

-

— taogin@microsoft.com
@ http://research.microsoft.com/users/taogin/

Thanks!

taogin@Mlicrosoft.com

