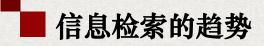
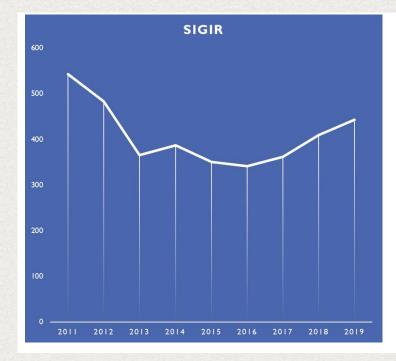


Trends in Information Retrieval 2019

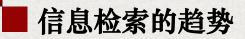
山东大学 计算机科学与技术学院

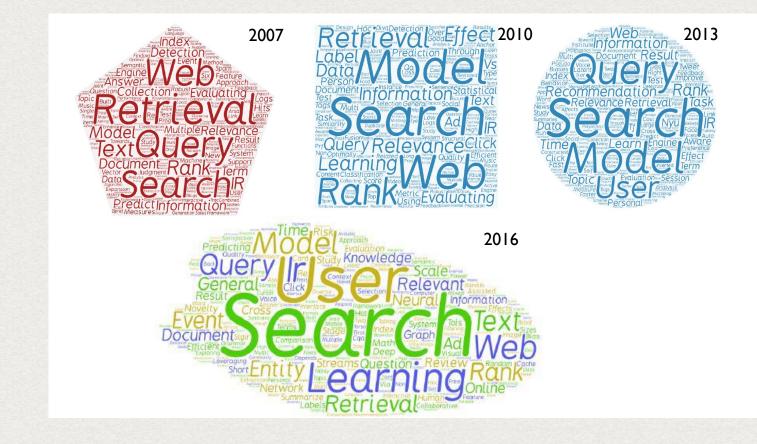


Outline



- 当前研究热点
- 研究趋势1: 对话式检索与推荐
- 研究趋势2: Neural-IR and Applications
- •研究趋势3:基于知识的检索与挖掘


Several slides are from Prof. Zhicheng Dou's talk at YSSNLP 2019



- Search engines are mature
 - and somehow are not fancy again
- Google/Bing/Baidu are becoming Al platforms, not just search engines

信息检索的研究内容 SIGIR 2019 tracks

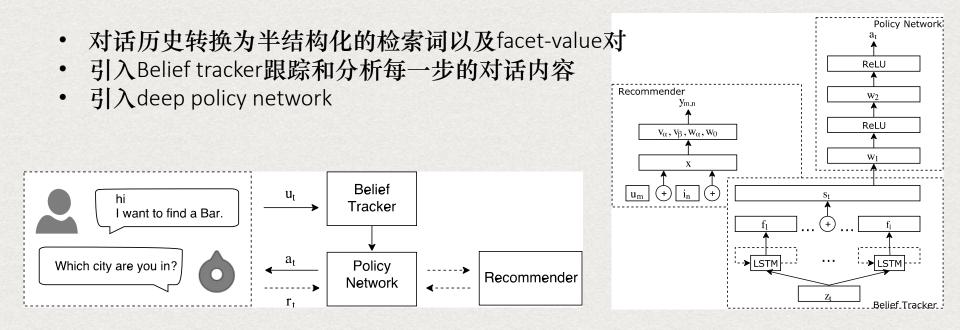
1901

- Search and Ranking
- Future Directions
 - Novel approaches to IR, IR with new devices, Applications of search to social good, …
- Domain-Specific Applications
 - Email, entity, education, legal, health, enterprise, ...
- Content Analysis, Recommendation and Classification
- Artificial Intelligence, Semantics, and Dialog
 - Question answering, Conversational systems and retrieval, Semantics and knowledge graphs, Deep learning for IR, embeddings, and agents
- Human Factors and Interfaces
 - User-centric aspects of IR
- Evaluation

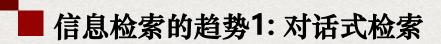
信息检索的研究内容: SIGIR 2019 papers

信息检索的趋势1:对话式检索与推荐

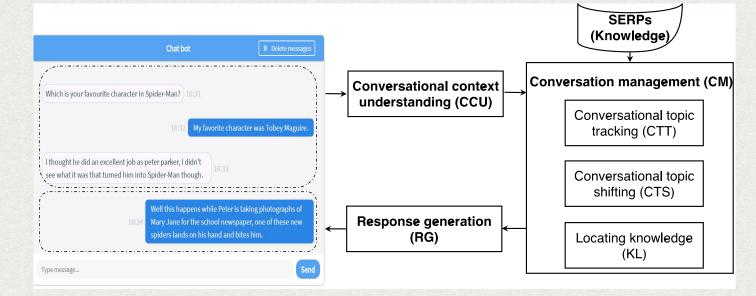
对话式信息获取 (Conversational information seeking): 通过对话式的交互模式从海量的网络文本中获取信息


- 对话式推荐 Conversational recommendation
- 对话式检索 Conversational search

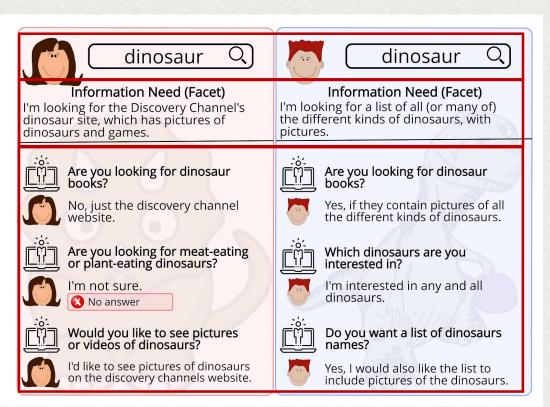
问答机器人 任务导向的对话生成系统 社交机器人 检索词理解,搜索过程管理 会话式语音检索 (Session-based Spoken Search) 评估 应用场景


- CAIR 2018 :The Second International Workshop on Conversational Approaches to Information Retrieval.
- WCIS 2019 :The FirstWorkshop on Conversational Interaction Systems.
- Jianfeng Gao, Michel Galley and Lihong Li (2019), "Neural Approaches to Conversational AI", Foundations and Trends®in Information Retrieval:Vol. 13: No. 2-3, pp 127-298.

信息检索的趋势1:对话式推荐

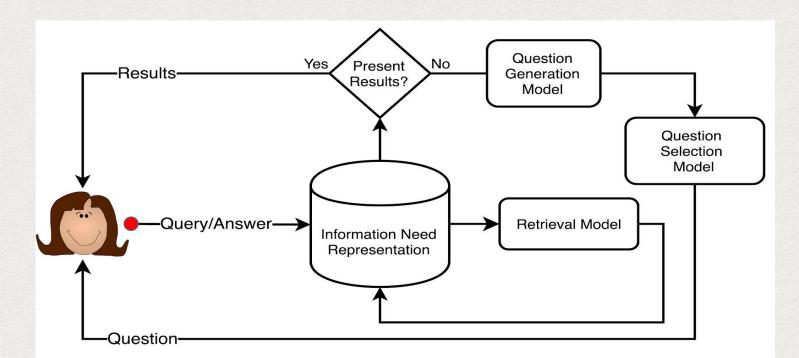


Yuemeng Sun, Yi Zhang, Conversational Recommender System, In SIGIR 2018



对话式检索 (Belkin, CJIS 1980) 目标: 让检索界面对于用户更加的方便与自然 对话式搜索引擎结果页面 ()

Maarten de Rijke, SERP-Based Conversations, in SCAI workshop on IJCAI 2019



Mohammad Aliannejadi et al., Asking Clarifying Questions in Open-Domain Information-Seeking Conversations, SIGIR 2019

信息检索的趋势1:对话式检索

Mohammad Aliannejadi et al., Asking Clarifying Questions in Open-Domain Information-Seeking Conversations, SIGIR 2019

信息检索的趋势2: Neural-IR and Applications

Workshops

- Neu-IR 2016:The SIGIR 2016 Workshop on Neural Information Retrieval.
- Neu-IR 2017 :The SIGIR 2017 Workshop on Neural Information Retrieval.

Tutorials

- NN4IR@ECIR2018: Neural Networks for Information Retrieval, at ECIR 2018
- NN4IR@SIGIR2017: Neural Networks for Information Retrieval, tutorial at SIGIR 2017
- NN4IR@WSDM2018: Neural Networks for Information Retrieval, tutorial at WSDM 2018

Bhaskar Mitra, et al., An Introduction to Neural Information Retrieval, 2018

■ 信息检索的趋势2: Neural-IR

Search vs QA?

- Search is harder as it has very strong baselines
 Po replying ve Peplying
- Re-ranking vs Ranking
- Inverted index for semantic matching

Neural models

- 1. Capsule Network
- 2. GAN
- 3. Reinforcement Learning
- 4. BERT ...

Data Set	Robust04		GOV2 _{MQ2007}		WT09-14	Sougo-Log
Model	MAP	P@20	MAP	P@10	ERR@20	NDCG@1
BM2546 (1994) ^{1,2}	0.255	0.370	0.450	0.366	1	0.142
QL[120] (1998) ^{1,4}	0.253	0.369	1	1	0.113	0.126
RM3[121](2001) ⁵	0.287	0.377	1	1	1	1
RankSVM $[122]$ $(2002)^2$	\	1	0.464	0.381	1	0.146
LambdaMart 100 $(2010)^2$	1	1	0.468	0.384	1	1
DSSM[13] $(2013)^{1,2}_{S/R/G}$	0.095	0.171	0.409	0.352	1	1
CDSSM 47 $(2014)^{1,2}_{S/R/G}$	0.067	0.125	0.364	0.291	1	0.144
ARC-I[17] $(2014)^{1,2}_{S/R/G}$	0.041	0.065	0.417	0.364	1	1
ARC-II[17] $(2014)^{1,2}_{S/I/G}$	0.067	0.128	0.421	0.366	1	1
MP[18] $(2016)^{1,2,4}_{S/I/G}$	0.189	0.290	0.434	0.371	0.148	0.218
Match-SRNN 69 $(2016)_{S/H/G}^2$	1	1	0.456	0.384	1	1
DRMM[21] $(2016)^{1,2,4}_{A/I/G}$	0.279	0.382	0.467	0.388	0.171	0.137
DRMM[21] $(2016)^{1,2,4}_{A/I/G}$ Duet[23] $(2017)^{3,4}_{A/H/G}$	1	1	0.474	0.398	0.134	1
DeepRank 33 $(2017)^2_{A/I/G}$	1	1	0.497	0.412	1	1
K-NRM 85 $(2017)^4_{A/I/G}$	\	1	1	1	0.154	0.264
K-NRM 85 $(2017)^4_{A/I/G}$ PACRR 123 $(2017)^{6,4}_{A/I/M}$	0.254	0.363	1	1	0.191	1
Co-PACRR[118] $(2018)^4_{A/I/M}$	1	1	1	1	0.201	1
SNRM 28 $(2018)^5_{S/R/G}$	0.286	0.377	\	1	1	\
SNRM+PRF 28 $(2018)_{S/R/G}^5$	0.297	0.395	1	1	1	1
CONV-KNRM 84 $(2018)^4_{A/I/M}$	1	1	1	1	1	0.336
NPRF-KNRM 119 $(2018)^6_{A/I/G}$	0.285	0.393	\	\	1	1
NPRF-DRMM 119 $(2018)^6_{A/I/G}$	0.290	0.406	1	1	1	1
HiNT _[34] $(2018)^3_{A/I/G}$	1	1	0.502	0.418	1	1

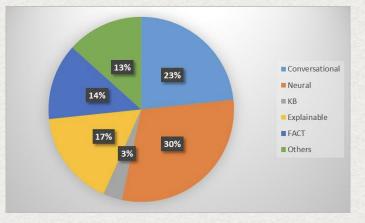
A Deep Look into Neural Ranking Models for Information Retrieval, Jiafeng Guo, et al., Information Processing and Management, 2019

信息检索的趋势2: 推荐系统

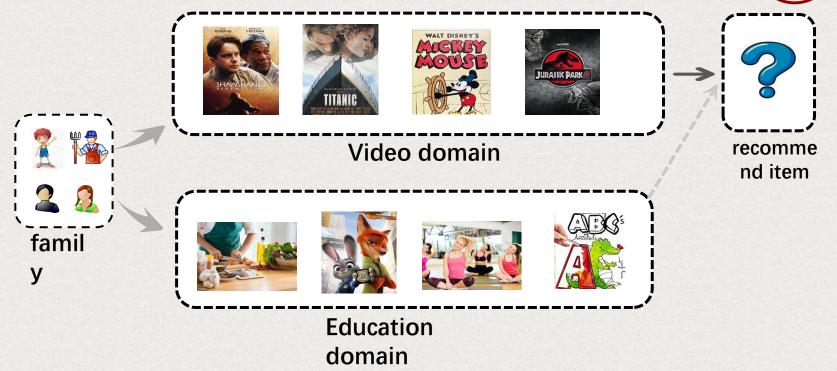
基于深度学习的推荐算法汇总:

- Session-based Recommendation:
 - Sequence and Time Aware Neighborhood for Session-based Recommendations
 - RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation
 - A Collaborative Session-based Recommendation Approach with Parallel Memory Modules
- Sequential Recommendation:
 - π-Net: A Parallel Information-sharing Network for Shared account Cross-domain Sequential Recommendations
 - Taxonomy-aware multi-hop reasoning networks for sequential recommendation
- Explainable/Review-based Recommendation
 - A Capsule Network for Recommendation and Explaining What You Like and Dislike
 - Neural Graph Collaborative Filtering
 - Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
- Applications based on Recommendation
 - CROSS: Cross-platform Recommendation for Social E-Commerce
 - Unified Collaborative Filtering over Graph Embeddings
 - etc.

■ 信息检索的趋势2: 可解释推荐系统

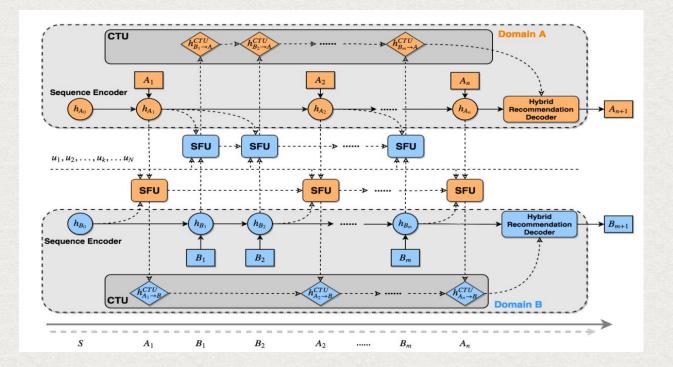


Workshops on explainable recommendation


EARS 2018: International Workshop on Explainable Recommendation and Search,

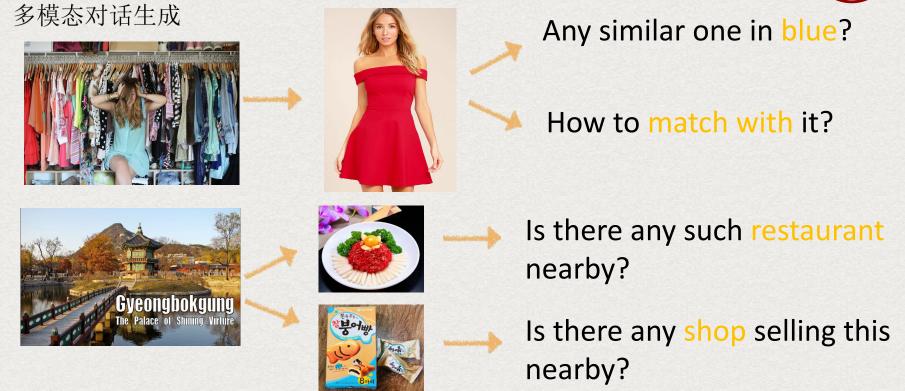
Yongfeng Zhang, Yi Zhang, and Min Zhang. EARS 2019: International Workshop on Explainable Recommendation and Search

Yongfeng Zhang, Yi Zhang, Min Zhang, and Chirag Shah



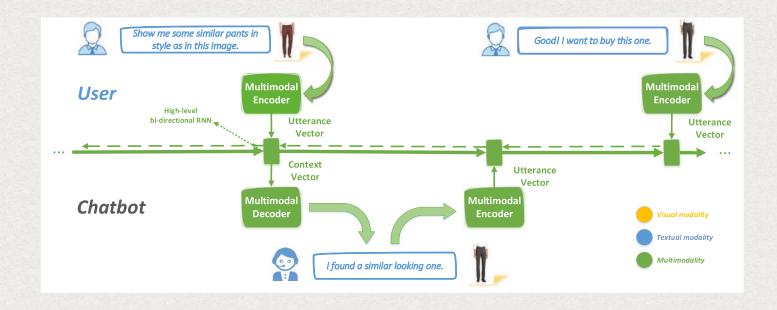
信息检索的趋势2: 跨域序列推荐 What is the cross-domain scenario?

Muyang Ma, et al., π -Net: A Parallel Information-sharing Network for Shared account Crossdomain Sequential Recommendations, In SIGIR 2019 信息检索的趋势2: 跨域序列推荐



Muyang Ma, et al., π -Net: A Parallel Information-sharing Network for Shared account Crossdomain Sequential Recommendations, In SIGIR 2019

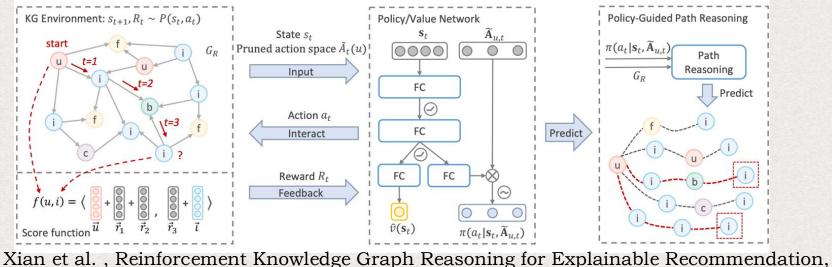
信息检索的趋势2: Multi-modal Applications



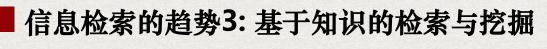
User Attention-guided Multimodal Dialog Systems Chen Cui, Wenjie Wang, Xuemeng Song, Minlie Huang, Xin-Shun Xu and Liqiang Nie, SIGIR 2019

信息检索的趋势2: Neural-IR and Applications

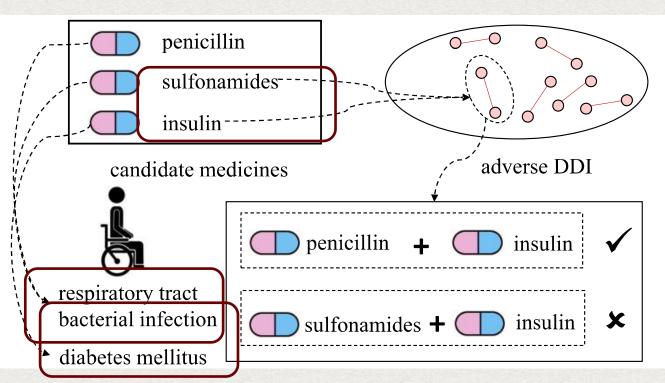
多模态对话生成

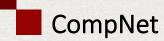

User Attention-guided Multimodal Dialog Systems Chen Cui, Wenjie Wang, Xuemeng Song, Minlie Huang, Xin-Shun Xu and Liqiang Nie, SIGIR 2019

信息检索的趋势3: 基于知识的检索与挖掘

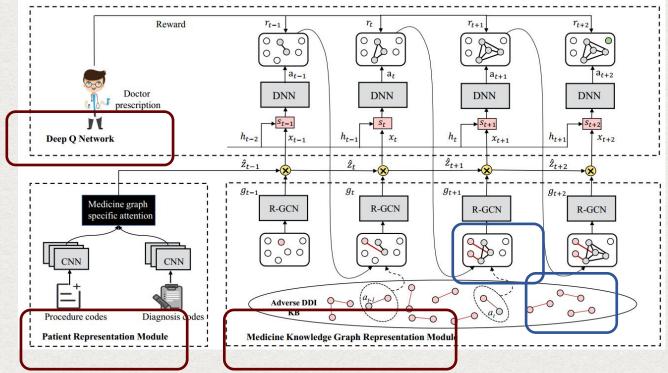

In SIGIR 2019

Reinforcement KG Reasoning


- Reinforcement Knowledge Graph Reasoning for Explainable Recommendation [Xian et al. SIGIR'2019]
- Paradigm of previous methods: for each user, for each candidate item, calculate ranking score based on path info between this user-item pair.
- Too many candidate items: Can we avoid enumerating all candidate items?



基于图卷积强化学习的药物组合预测



Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning. In CIKM , 2019.

CompNet 模型结构 Order-free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning. In CIKM, 2019.

任昭春 山东大学计算机科学与技术学院 zhaochun.ren@sdu.edu.cn +8615210399563

谢谢!