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The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted in 10.
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
adjacent words or representing discourse relations.

work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
adjacent words or representing discourse relations.

work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
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work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
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work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
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work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Comparing GRN with other GNNs
GRN (ACL 2018) GCN (EMNLP 2017) GAT (ICLR 2018)

Message 
calculation:

𝑚'( = )
*∈,-

ℎ*(/0 𝒂 = 𝛼 ℎ'(/0, ℎ*(/0

State 
update:

ℎ'(, 𝑐'(

= 𝐿𝑆𝑇𝑀(𝑚'(, [ℎ'(/0𝑐'(/0])
ℎ'( = σ(𝑊𝑚'( + 𝑏) ℎ'( = σ()

*∈,-

𝒂𝑊ℎ*(/0)

State 
memory: both ℎ and 𝑐 only ℎ only ℎ
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GRN: Linfeng song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation. ACL 2018.
GCN: Joost Basting, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.
GAT: Peter Velickovic, Guillem Cucurull et al., Graph Attention Networks, ICLR 2018.
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GRN: Linfeng song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation. ACL 2018.
GCN: Joost Basting, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.
GAT: Peter Velickovic, Guillem Cucurull et al., Graph Attention Networks, ICLR 2018.

Numerous 𝐯𝐚𝐫𝐢𝐚𝐭𝐢𝐨𝐧𝐬 𝐢𝐧 𝐭𝐡𝐞 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐞𝐝𝐠𝐞𝐬, 𝐯𝐞𝐫𝐭𝐞𝐱𝐞𝐬, 𝐚𝐧𝐝 𝐠𝐫𝐚𝐩𝐡 𝐢𝐧𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝐩𝐫𝐨𝐩𝐚𝐠𝐚𝐭𝐢𝐨𝐧



Outline

• Graph Structures in NLP

• Two major models for representing graphs

• Solving problems using graph encoding
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Solving problems using graph encoding

25

• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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Syntax-aware Neural Machine Translation

The goal is to provide the encoder with 
access to rich syntactic information but 
let it decide which aspects of syntax 
are beneficial for NMT, because rigid 
constraints on the syntactic typically 
hurt MT.

Joost Bastings, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.



Syntactic GCNs
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Standard GCN layer

Handle over-
parameterized

Joost Bastings, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.

Syntactic GCN layer



29

Syntax-aware Neural Machine Translation

A 2-layer syntactic GCN on top 
of a convolutional encoder.

Joost Bastings, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.

Syntactic GCN layer
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Experiments 

Joost Bastings, Ivan Titov et al., Graph Convolutional Encoders for Syntax-aware Neural Machine Translation, EMNLP 2017.



31

Exploiting Semantics in NMT with GCNs

A0

John   gave   his   beautiful   wife   a   nice   present   .

A1
A2

John

give-01

person

have-rel-rol-91

present

nice

:ARG0

:ARG2

wife

:ARG0-of

:ARG1

:mod

:ARG1

:ARG2
Diego Marchenggiani, Joost Basting, Ivan Titov, Exploiting Semantics in Neural Machine Translation with 
Graph neural networks, NAACL 2018.
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Fill the gap by considering semantic structures in NMT.

Sematic roles can be beneficial to “argument switching”.

A0

John   gave   his   beautiful   wife   a   nice   present   .

A1
A2

John

give-01

person

have-rel-rol-91

present

nice

:ARG0

:ARG2

wife

:ARG0-of

:ARG1

:mod

:ARG1

:ARG2

Exploiting Semantics in NMT with GCNs

Diego Marchenggiani, Joost Basting, Ivan Titov, Exploiting Semantics in Neural Machine Translation with 
Graph neural networks, NAACL 2018.
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Exploiting Semantics in NMT with GCNs

Diego Marchenggiani, Joost Basting, Ivan Titov, Exploiting Semantics in Neural Machine Translation with 
Graph neural networks, NAACL 2018.

Similar gating
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Experiments 

Test BLEU, En-De, News commentary

Diego Marchenggiani, Joost Basting, Ivan Titov, Exploiting Semantics in Neural Machine Translation with 
Graph neural networks, NAACL 2018.
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Experiments 

Test BLEU, En-De, full WMT16

Diego Marchenggiani, Joost Basting, Ivan Titov, Exploiting Semantics in Neural Machine Translation with 
Graph neural networks, NAACL 2018.
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John   gave   his   beautiful   wife   a   nice   present   .
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:ARG2

beautiful
:mod

Semantic NMT using AMR
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



A Graph-to-Sequence Model for AMR-to-Text Generation

Linfeng Song1, Yue Zhang3, Zhiguo Wang2 and Daniel Gildea1

1Department of Computer Science, University of Rochester, Rochester, NY 14627
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

3Singapore University of Technology and Design

Abstract

The problem of AMR-to-text generation
is to recover a text representing the
same meaning as an input AMR graph.
The current state-of-the-art method uses
a sequence-to-sequence model, leverag-
ing LSTM for encoding a linearized AMR
structure. Although it is able to model
non-local semantic information, a se-
quence LSTM can lose information from
the AMR graph structure, and thus faces
challenges with large graphs, which re-
sult in long sequences. We introduce a
neural graph-to-sequence model, using a
novel LSTM structure for directly encod-
ing graph-level semantics. On a standard
benchmark, our model shows superior re-
sults to existing methods in the literature.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism that
encodes the meaning of a sentence as a rooted,
directed graph. Figure 1 shows an AMR graph
in which the nodes (such as “describe-01” and
“person”) represent the concepts, and edges (such
as “:ARG0” and “:name”) represent the relations
between concepts they connect. AMR has been
proven helpful on other NLP tasks, such as ma-
chine translation (Jones et al., 2012; Tamchyna
et al., 2015), question answering (Mitra and Baral,
2015), summarization (Takase et al., 2016) and
event detection (Li et al., 2015).

The task of AMR-to-text generation is to pro-
duce a text with the same meaning as a given in-
put AMR graph. The task is challenging as word
tenses and function words are abstracted away
when constructing AMR graphs from texts. The
translation from AMR nodes to text phrases can

:name

:ARG0

describe-01

name

person

"Ryan"

:op1

:ARG1

genius

:ARG2

Figure 1: An example of AMR graph meaning
“Ryan’s description of himself: a genius.”

be far from literal. For example, shown in Figure
1, “Ryan” is represented as “(p / person :name (n /
name :op1 “Ryan”))”, and “description of” is rep-
resented as “(d / describe-01 :ARG1 )”.

While initial work used statistical approaches
(Flanigan et al., 2016b; Pourdamghani et al., 2016;
Song et al., 2017; Lampouras and Vlachos, 2017;
Mille et al., 2017; Gruzitis et al., 2017), recent re-
search has demonstrated the success of deep learn-
ing, and in particular the sequence-to-sequence
model (Sutskever et al., 2014), which has achieved
the state-of-the-art results on AMR-to-text gen-
eration (Konstas et al., 2017). One limitation
of sequence-to-sequence models, however, is that
they require serialization of input AMR graphs,
which adds to the challenge of representing graph
structure information, especially when the graph is
large. In particular, closely-related nodes, such as
parents, children and siblings can be far away after
serialization. It can be difficult for a linear recur-
rent neural network to automatically induce their
original connections from bracketed string forms.

To address this issue, we introduce a novel
graph-to-sequence model, where a graph-state
LSTM is used to encode AMR structures directly.
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Abstract meaning representation (AMR)

Ryan’s description of himself: a genius
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



Encoding AMRs with GRN

Time
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



Baseline: attention-based seq2seq

John        wants           to            go

... ...

möchte gehen

möchte

39

Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



Model: Dual2seq

John        wants           to            go

... ...

möchte gehen

möchte

Time

GRN-based graph encoder

sequential encoder
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



Experiments
• Benchmark (EN-DE): 

• Training: News commentary v11 (241K), full WMT 16 (4.5M)
• Dev/Test: newstest2013/newstest2016

• Preprocessing:
• Tokenization by Moses tokenizer
• Training sentences with length ≥ 50 are filtered
• AMRs (JAMR), dependency trees (CoreNLP), semantic roles (IBM SIRE)

• Report cased BLEU (primary metric), Meteor and TER↓

41

Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.



Main results

+3.2 +1.8
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.

System
NC-v11 Full WMT 16

BLEU(%) TER↓ Meteor(%) BLEU(%) TER↓ Meteor(%)
OpenNMT-tf 15.1 0.6902 30.4 24.3 0.5567 42.3
Seq2seq 16.0 0.6695 33.8 23.7 0.5590 42.6
Marcheggiani et al. (Dep) 16.1 -- -- 23.9 -- --
Marcheggiani et al. (SRL) 15.6 -- -- 24.5 -- --
Marcheggiani et al. (both) 15.8 -- -- 24.9 -- --
Dual2seq-LinAMR 17.3 0.6530 36.1 24.0 0.5643 42.5
Duel2seq-SRL 17.2 0.6591 36.4 23.8 0.5626 42.2
Dual2seq-Dep 17.8 0.6516 36.7 25.0 0.5538 43.3
Dual2seq 19.2 0.6305 38.4 25.5 0.5480 43.8
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Linfeng Song, Daniel Gildea, Yue Zhang, Semantic Neural Machine Translation using AMR, TACL 2019.
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Solving problems using graph encoding
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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AMR-to Text Generation

• AMR: Abstraction meaning representation

• Differ from SRL, the task is challenging as word 
tenses and function words are abstracted away 
when constructing AMR graphs.

Linfeng Song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018.
Daniel Beck, Gholamreza Haffari ey al., Graph-to-sequence learning using gated graph neural networks, ACL 2018.
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Graph to sequence model

Time

Same to above Graph state LSTM model

Encoding AMRs with GRN

Linfeng Song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018.
Daniel Beck, Gholamreza Haffari ey al., Graph-to-sequence learning using gated graph neural networks, ACL 2018.
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Experiments

AMR corpus(LDC2015E86)

3 times

Linfeng Song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018.
Daniel Beck, Gholamreza Haffari ey al., Graph-to-sequence learning using gated graph neural networks, ACL 2018.
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Experiments

Dev BLEU scores against transition steps for the graph encoder.

Linfeng Song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018.
Daniel Beck, Gholamreza Haffari ey al., Graph-to-sequence learning using gated graph neural networks, ACL 2018.
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Experiments

Percentage of Dev AMRs with different diameters.

Linfeng Song, Yue Zhang et al., A Graph-to-Sequence Model for AMR-to-Text Generation, ACL 2018.
Daniel Beck, Gholamreza Haffari ey al., Graph-to-sequence learning using gated graph neural networks, ACL 2018.
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Structural Neural Encoders for AMR-to-text

This paper investigated the different 
encoders between:
• Sequence
• Tree
• Graph

Damonte and Cohen, Structural Neural Encoders for AMR-to-text Generation, NAACL 2019.
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Structural Neural Encoders for AMR-to-text

Damonte and Cohen, Structural Neural Encoders for AMR-to-text Generation, NAACL 2019.
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Structural Neural Encoders for AMR-to-text

Damonte and Cohen, Structural Neural Encoders for AMR-to-text Generation, NAACL 2019.
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Structural Neural Encoders for AMR-to-text

Evaluation script: https://github.com/sinantie/NeuralAmr

Damonte and Cohen, Structural Neural Encoders for AMR-to-text Generation, NAACL 2019.
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Comment Generation

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

Several nontrivial challenges:

• The news articles can be very long while the 
title is can be too short to provide sufficient 
information.

• The title of the news sometimes uses 
hyperbolic expressions.

• Users focus on different aspects (topics) of 
the news.
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Coherent Comment Generation for Chinese 
Articles with a Graph-to-Sequence Model

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019
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Graph Construction

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

• Do NER and Extract the keywords of the 
article as the topics, most of them are 
NERs.
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Graph Construction

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

• Do NER and Extract the keywords of the 
article as the topics, most of them are 
NERs.

• Associate each sentence to its 
corresponding keywords.
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Graph Construction

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

• Do NER and Extract the keywords of the 
article as the topics, most of them are 
NERs.

• Associate each sentence to its 
corresponding keywords.

• Sentences that do mot contain any of 
the keywords.
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Graph Construction

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

• Do NER and Extract the keywords of the 
article as the topics, most of them are 
NERs.

• Associate each sentence to its 
corresponding keywords.

• Sentences that do mot contain any of 
the keywords.

• Use the number of shared sentences as 
edge weight.
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Graph Encoder

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

Standard GCN
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Decoder

Decoder: RNN with attention mechanism.

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019
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Experiments

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

Document and comment number 
of Entertainment and Sport.

Length of content, title, 
comment and keyword. 

Dataset : https://pan.baidu.com/s/1b5zAe7qqUBmuHz6nTU95UA5.
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Experiments

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

Entertainment dataset
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Experiments

Coherent Comment Generation for Chinese Articles with a Graph-to-Sequence Model, Wei Li, et al., ACL2019

Sport dataset



Solving problems using graph encoding
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation



Multi-hop reading comprehension

The Hanging Gardens, in [Mumbai], also known as Pherozeshah
Mehta Gardens, are terraced gardens ... [They] provide sunset 
views over [the Arabian Sea] ...

[Mumbai] (also known as Bombay, the official name until 1995) is 
the capital city of the Indian state of Maharashtra. [It] is the most 
populous city in [India] ...

[The Arabian Sea] is a region of the northern Indian Ocean 
bounded  on the north by [Pakistan] and [Iran], on the west by 
northeastern [Somalia] and the Arabian Peninsula ...

Q: (The Hanging Gardens, country, ?) 
Candidates: {Iran, India, Pakistan, Somalia, ...}

66



Multi-hop reading comprehension
Relevant evidence:
• The Hanging Gardens are in Mumbai.
• Mumbai is the most populous city in India.

Irrelevant evidence:
• The Hanging Gardens provide sunset views 

over the Arabian Sea.
• The Arabian Sea is bounded by Pakistan, 

Iran and Somalia.
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the capital city of the Indian state of Maharashtra. [It] is the most 
populous city in [India] ...

[The Arabian Sea] is a region of the northern Indian Ocean 
bounded  on the north by [Pakistan] and [Iran], on the west by 
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views over [the Arabian Sea] ...

[Mumbai] (also known as Bombay, the official name until 1995) is 
the capital city of the Indian state of Maharashtra. [It] is the most 
populous city in [India] ...

[The Arabian Sea] is a region of the northern Indian Ocean 
bounded  on the north by [Pakistan] and [Iran], on the west by 
northeastern [Somalia] and the Arabian Peninsula ...

Q: (The Hanging Gardens, country, ?) 
Candidates: {Iran, India, Pakistan, Somalia, ...}

Multi-hop reading comprehension

Relevant evidence:
• The Hanging Gardens are in Mumbai.
• Mumbai is the most populous city in India.

Irrelevant evidence:
• The Hanging Gardens provide sunset views 

over the Arabian Sea.
• The Arabian Sea is bounded by Pakistan, 

Iran and Somalia.

(1) Structure creation

(2) Evidence integration

68

Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.



Coref-DAG vs Evidence graph

same

The Hanging 
Gardens

Mumbai They Arabian 
Sea

ItMumbai India

Passage 1 Passage 2

The Hanging 
Gardens

Mumbai They Arabian 
Sea

ItMumbai India

Passage 1 Passage 2

window
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Coreference DAG

Evidence graph (Ours)
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.
Bhuwan DhiNeural Models for Reasoning over Multiple  Mentions using Coreference (Dhingra et al., NAACL 2018)



Graph recurrent network (GRN)

• GRN follows an iterative message passing process for 
updating each node state.

• Within each iteration, it takes two main steps:
• Message calculation
• Node state update

…

… …

𝑔Q

… …

𝑔(/0

… …

𝑔(
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.



Experiments

• WikiHop (http://qangaroo.cs.ucl.ac.uk/)
• 51K instances: 44K (training), 5K (dev), 2.5K (hold-out test)

• Each instance is: ( 𝑝0, 𝑝S …𝑝U , 𝑞, 𝐶, 𝑎)

• Mentions are generated from automatic NER and coreference 
resolution, by Stanford CoreNLP
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.



DEV experiment on message passing step (T)
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.



Main Comparison (accuracy)

+1.5
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.

Model Dev Test
GA w/ GRU (Dhingra et al., 2018) 54.9 --
GA w/ Coref-GRU (Dhingra et al., 2018) 56.0 59.3
Local 61.0 --
Local-2L 61.3 --
Coref-LSTM 61.4 --
Coref-GRN 61.4 --
Fully-Connect-GRN 61.3 --
MHQA-GRN 62.8 65.4
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Linfeng song, Zhiguo Wang et al., Exploring Graph-structured Passage Representation for Multi-hop Reading 
Comprehension with Graph Neural Networks, arXiv 2018.
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BAG: Bi-directional Attention Entity Graph 
Contribution 1

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.

Contribution 1
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BAG: Bi-directional Attention Entity Graph 

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Entity Graph Construction using Entity-GCN

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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BAG: Bi-directional Attention Entity Graph 

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Multi-level features
ELMo: represent tokens
GLoVe: represent contextual-level features
NER & POS：represent semantic properties

For documents

For queries

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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BAG: Bi-directional Attention Entity Graph 

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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GCN layer using R-GCN

Edges information

Standard GCN：

R-GCN：

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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BAG: Bi-directional Attention Entity Graph 

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Bi-directional attention layer

Node features

Query features

ℎY

𝑓[

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.

Attention -- aggregation
Tradition attention: weighted sum of one variable 
Bi-directional attention or co-attention: 
- on two variables
- integrate both as key
- weighted sum of each variable
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BAG: Bi-directional Attention Entity Graph 

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Experiments

WikiHop (http://qangaroo.cs.ucl.ac.uk/)
Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Ablation Experiments of BAG model

Yu Cao, Meng Fang et al., BAG: Bi-directional Attention Entity Graph Convolutional Network for Multi-hop 
Reasoning Question Answering, NAACL 2019.
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Multi-hop Reading Comprehension by 
Reasoning over Heterogeneous Graphs

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

Heterogeneous Document-Entity (HDE)
graph.

Feature integration over
- Candidates
- Entities
- Documents
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HDE graph framework

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

• Score accumulation.

• Reasoning over HDE graph with 
GNN.

• Initialize HDE graph nodes with co-
attention and self-attention based 
context coding.
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HDE graph framework

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

• Score accumulation.

• Reasoning over HDE graph with 
GNN.

• Initialize HDE graph nodes with co-
attention and self-attention based 
context coding.
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HDE graph framework

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

• Score accumulation.

• Reasoning over HDE graph with 
GNN.

• Initialize HDE graph nodes with co-
attention and self-attention based 
context coding.
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HDE graph framework

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

• Score accumulation.

• Reasoning over HDE graph with 
GNN.

• Initialize HDE graph nodes with co-
attention and self-attention based 
context coding.
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Reasoning with HDE graph

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

Documents Candidates Entities
1. candidate appear in the document.
2. the entity is extracted from the document.
3. the entity is a mention of the candidate.
4. Entities are extracted from the same 

document.
5. Entities are mentions of the same candidate 

or query subject and they are extracted from 
different documents.

6. all candidate nodes connect with each other.
7. entity nodes that do not meet previous 

conditions are connected. (ignored for good 
visualization)
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Experiments

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.

WikiHop
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Experiments

Ming Tu et al., Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs, ACL 2019.
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Textbook Question Answering

Daesik Kim, Seonhoon Kim and Nojun Kwak, Textbook Question Answering with Multi-modal Context Graph 
Understanding and Self-supervised Open-set Comprehension, ACL 2019.
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Textbook Question Answering

Daesik Kim, Seonhoon Kim and Nojun Kwak, Textbook Question Answering with Multi-modal Context Graph 
Understanding and Self-supervised Open-set Comprehension, ACL 2019.
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Textbook Question Answering

• More complexity in data format 
and length.

• It is very difficult to solve 
problems that have not been 
studied before

Daesik Kim, Seonhoon Kim and Nojun Kwak, Textbook Question Answering with Multi-modal Context Graph 
Understanding and Self-supervised Open-set Comprehension, ACL 2019.
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Textbook Question Answering

• A fusion GCN (f-GCN)

• A novel self-supervised open-
set comprehension (SSOC)

Daesik Kim, Seonhoon Kim and Nojun Kwak, Textbook Question Answering with Multi-modal Context Graph 
Understanding and Self-supervised Open-set Comprehension, ACL 2019.
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Overall framework

Daesik Kim, Seonhoon Kim and Nojun Kwak, Textbook Question Answering with Multi-modal Context Graph 
Understanding and Self-supervised Open-set Comprehension, ACL 2019.



Solving problems using graph encoding

101

• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation



Cross-sentence N-ary Relation Extraction

The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted in 10.
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All patients were treated with gefitinib and showed a partial response.
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
adjacent words or representing discourse relations.

work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Previous SOTA: DAG LSTM

DET
NN

The ?  deletion ?  mutation ?  on ?  exon-19  ?   of ?  EGFR ?  gene ?  was ?  presented ?  in ?  16 ?  patients ...
(a)

PREP_ON PREP_OF

NN

NSUBJ

COP

ROOT
PREP_IN

NUM

(b)

103

Nanyun Peng, Hoifung Poon et al., Cross-sentence n-ary relation extraction with graph LSTMs, TACL 2017.
Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Overall framework
networks. Generalizing this paradigm to the n-ary
setting is challenging, as there are

�n
2

�
paths. One

apparent solution is inspired by Davidsonian seman-
tics: first, identify a single trigger phrase that sig-
nifies the whole relation, then reduce the n-ary re-
lation to n binary relations between the trigger and
an argument. However, challenges remain. It is of-
ten hard to specify a single trigger, as the relation
is manifested by several words, often not contigu-
ous. Moreover, it is expensive and time-consuming
to annotate training examples, especially if triggers
are required, as is evident in prior annotation efforts
such as GENIA (Kim et al., 2009). The realistic and
widely adopted paradigm is to leverage indirect su-
pervision, such as distant supervision (Craven and
Kumlien, 1999; Mintz et al., 2009), where triggers
are not available.

Additionally, lexical and syntactic patterns signi-
fying the relation will be sparse. To handle such
sparsity, traditional feature-based approaches require
extensive engineering and large data. Unfortunately,
this challenge becomes much more severe in cross-
sentence extraction when the text spans multiple sen-
tences.

To overcome these challenges, we explore a gen-
eral relation extraction framework based on graph
LSTMs. By learning a continuous representation
for words and entities, LSTMs can handle sparsity
effectively without requiring intense feature engineer-
ing. The graph formulation subsumes prior LSTM
approaches based on chains or trees, and can incor-
porate rich linguistic analyses.

This approach also opens up opportunities for joint
learning with related relations. For example, the
Response relation over d, g, v also implies a binary
sub-relation over drug d and mutation v, with the
gene underspecified. Even with distant supervision,
the supervision signal for n-ary relations will likely
be sparser than their binary sub-relations. Our ap-
proach makes it very easy to use multi-task learning
over both the n-ary relations and their sub-relations.

3 Graph LSTMs

Learning a continuous representation can be effective
for dealing with lexical and syntactic sparsity. For se-
quential data such as text, recurrent neural networks
(RNNs) are quite popular. They resemble hidden
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Figure 2: A general architecture for cross-sentence
n-ary relation extraction based on graph LSTMs.

Markov models (HMMs), except that discrete hid-
den states are replaced with continuous vectors, and
emission and transition probabilities with neural net-
works. Conventional RNNs with sigmoid units suffer
from gradient diffusion or explosion, making train-
ing very difficult (Bengio et al., 1994; Pascanu et al.,
2013). Long short-term memory (LSTMs) (Hochre-
iter and Schmidhuber, 1997) combats these problems
by using a series of gates (input, forget and output)
to avoid amplifying or suppressing gradients during
backpropagation. Consequently, LSTMs are much
more effective in capturing long-distance dependen-
cies, and have been applied to a variety of NLP tasks.
However, most approaches are based on linear chains
and only explicitly model the linear context, which
ignores a variety of linguistic analyses, such as syn-
tactic and discourse dependencies.

In this section, we propose a general framework
that generalizes LSTMs to graphs. While there is
some prior work on learning tree LSTMs (Tai et al.,
2015; Miwa and Bansal, 2016), to the best of our
knowledge, graph LSTMs have not been applied to
any NLP task yet. Figure 2 shows the architecture of
this approach. The input layer is the word embedding
of input text. Next is the graph LSTM which learns
a contextual representation for each word. For the
entities in question, their contextual representations
are concatenated and become the input to the relation
classifiers. For a multi-word entity, we simply used
the average of its word representations and leave
the exploration of more sophisticated aggregation
approaches to future work. The layers are trained
jointly with backpropagation. This framework is
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DAG LSTM
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.
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an argument. However, challenges remain. It is of-
ten hard to specify a single trigger, as the relation
is manifested by several words, often not contigu-
ous. Moreover, it is expensive and time-consuming
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are required, as is evident in prior annotation efforts
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are not available.

Additionally, lexical and syntactic patterns signi-
fying the relation will be sparse. To handle such
sparsity, traditional feature-based approaches require
extensive engineering and large data. Unfortunately,
this challenge becomes much more severe in cross-
sentence extraction when the text spans multiple sen-
tences.

To overcome these challenges, we explore a gen-
eral relation extraction framework based on graph
LSTMs. By learning a continuous representation
for words and entities, LSTMs can handle sparsity
effectively without requiring intense feature engineer-
ing. The graph formulation subsumes prior LSTM
approaches based on chains or trees, and can incor-
porate rich linguistic analyses.

This approach also opens up opportunities for joint
learning with related relations. For example, the
Response relation over d, g, v also implies a binary
sub-relation over drug d and mutation v, with the
gene underspecified. Even with distant supervision,
the supervision signal for n-ary relations will likely
be sparser than their binary sub-relations. Our ap-
proach makes it very easy to use multi-task learning
over both the n-ary relations and their sub-relations.

3 Graph LSTMs

Learning a continuous representation can be effective
for dealing with lexical and syntactic sparsity. For se-
quential data such as text, recurrent neural networks
(RNNs) are quite popular. They resemble hidden
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n-ary relation extraction based on graph LSTMs.

Markov models (HMMs), except that discrete hid-
den states are replaced with continuous vectors, and
emission and transition probabilities with neural net-
works. Conventional RNNs with sigmoid units suffer
from gradient diffusion or explosion, making train-
ing very difficult (Bengio et al., 1994; Pascanu et al.,
2013). Long short-term memory (LSTMs) (Hochre-
iter and Schmidhuber, 1997) combats these problems
by using a series of gates (input, forget and output)
to avoid amplifying or suppressing gradients during
backpropagation. Consequently, LSTMs are much
more effective in capturing long-distance dependen-
cies, and have been applied to a variety of NLP tasks.
However, most approaches are based on linear chains
and only explicitly model the linear context, which
ignores a variety of linguistic analyses, such as syn-
tactic and discourse dependencies.

In this section, we propose a general framework
that generalizes LSTMs to graphs. While there is
some prior work on learning tree LSTMs (Tai et al.,
2015; Miwa and Bansal, 2016), to the best of our
knowledge, graph LSTMs have not been applied to
any NLP task yet. Figure 2 shows the architecture of
this approach. The input layer is the word embedding
of input text. Next is the graph LSTM which learns
a contextual representation for each word. For the
entities in question, their contextual representations
are concatenated and become the input to the relation
classifiers. For a multi-word entity, we simply used
the average of its word representations and leave
the exploration of more sophisticated aggregation
approaches to future work. The layers are trained
jointly with backpropagation. This framework is
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Overall framework

DAG LSTM
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Code available at: 
https://github.com/freesunshine0316/nary-grn
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Efficiency of GRN versus DAG networks
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Experiments

• Evaluate on the corpus by Peng et al., (2017), with annotations of dependency, 
discourse and entity boundaries.

• Ternary (drug, gene, mutation): 6987 instances (Avg. length: 73.9)
• Binary (drug, mutation): 6087 instances (Avg. length: 61.0)

• Message passing step T=5, as determined by a DEV experiment

• Evaluation (Peng et al., 2017): 
• 5-fold validation
• Classification accuracy
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Main results
Model Precision (%)
Peng et al. (2017) 80.7
Peng et al. (2017) + Multi-task 82.0
Bidir DAG LSTM 77.3
GRN 83.2*

Model Precision (%)
Peng et al. (2017) 76.7
Peng et al. (2017) + Multi-task 78.5
Bidir DAG LSTM 76.4
GRN 83.6*

Ternary

Binary
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Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



Efficiency (Ternary)

Model Train Decode
Bidir DAG LSTM 281s 27.3s
GRN 36.7s (7.7 times faster) 2.7s (10 times faster)

Average sentence length: 75
Message passing step: 5

109

Linfeng Song, Yue Zhang et al., N-ary Relation Extraction using Graph State LSTM, EMNLP 2018.



110

Joint Type Inference on Entities and Relation

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.
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Joint Type Inference on Entities and Relation

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.

Four tasks: entity span à relation link à entity type à relation type
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Entity span extraction

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.
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Node embedding

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.
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Entity-Relation Bipartite Graph

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.

Standard GCN
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Experiments

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.



116

Experiments

Changzhi Sun, Yeyun Gong et al., Joint Type Inference on Entities and Relation via Graph Convolutional Networks.
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Shortage  of Tree LSTM, Graph LSTM

• They can only model word level graph.

• They all use dependency trees.

Graph Information Extraction

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Graph Information Extraction

Green: local contextual info.

Red: co-referent edges
Blue: identical-mention edges

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Graph Information Extraction

Differ form BiLSTM-CRF

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Graph Information Extraction

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Graph Information Extraction

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Experiments

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.



123

Experiments 1

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Experiments 1

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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Experiments 2

3.7 up

Yujie Qian, Enrico Santus et al., GraphIE: A Graph-Based Framework for Information Extraction, NAACL 2019.
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GraphRel: Modeling Text as Relational Graphs 
for Joint Entity and Relation Extraction

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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GraphRel: Modeling Text as Relational Graphs 
for Joint Entity and Relation Extraction

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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GraphRel: Modeling Text as Relational Graphs 
for Joint Entity and Relation Extraction

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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GraphRel: Modeling Text as Relational Graphs 
for Joint Entity and Relation Extraction

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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GraphRel: Modeling Text as Relational Graphs 
for Joint Entity and Relation Extraction

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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Experiments

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.
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Experiments

Tsu-Jui Fu et al., GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction, ACL2019.



133

GCN for Multimodal Information Extraction

Visually rich documents (VRDs)

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.

Value added tax invoice - extract buyer seller date amount.
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GCN for Multimodal Information Extraction

Feature from the image.
Text segments(4 coordinates), colors, fonts…

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Baseline

All above spectrum based approaches 
such as GCN do not work well on 
dynamic graph structures.

BiLSTM-CRF baseline

Differ from baseline.

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.

𝑥*
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Model

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model

Generated by OCR

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model

A graph model combine visual and textual context

Visual context: layout and relative positions 

Textual context: the aggregate of text info.

Generated by OCR

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model
For each node, calculate 
embedding using BiLSTM

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model
For each node, calculate 
embedding using BiLSTM

Between two nodes, edge 
embedding as follow:

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Using GAT as Graph Network module

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Model

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.

Final represntation of each segment is 
the concatenation of its embedding and 
graph information.
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Experiments

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Result on different entities

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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Experiments on GCN layers

Xiaojing Liu, Feiyu Gao et al., Graph Convolution for Multimodal Information Extraction from Visually Rich Documents, 
NAACL 2019.
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation



Tree-based Sentiment Analysis
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Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.



Communication over constituent tree with GRN
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Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.



Experiments

Dataset: SST-5 & SST-2
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Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.



Experiments

Main baselines:
• Stannard tree-LSTM (Zhu et al., 2015)
• Bidirectional tree-LSTM(Teng and Zhang, 2017)

Metrics:
• Root level accuracy
• Phrase level accuracy

151

Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.



DEV experiment
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Phrase level performances on the dev set.

Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.

R – GRN
C – GCN



Main results

R-Root, P-Phrase. 
S13
L15
LZ15
Z15
T15
S18
Z18
MY17
L17
TZ17

Socher et al. (2013); 
Li et al. (2015); 
Le and Zuidema (2015);
Zhu et al. (2015); 
Tai et al. (2015); 
Shen et al. (2018); 
Zhang et al. (2018a);
Munkhdalai and Yu (2017); 
Looks et al. (2017); 
Teng and Zhang (2017)

-
-
-
-
-
-
-
-
-
-
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Yuan Zhang, Yue Zhang, Tree Communication Models for Sentiment Analysis, ACL 2019.
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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Encoding Social Information with GCN 

Chang Li and Dan Goldwasser, Encoding Social Information with Graph Convolutional Networks for Political 
Perspective Detection in News Media, ACL 2019.
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Encoding Social Information with GCN

This paper cast the problem as a 3-
class prediction problem, capturing 
left-leaning bias, right-leaning bias 
or no bias (center).

Chang Li and Dan Goldwasser, Encoding Social Information with Graph Convolutional Networks for Political 
Perspective Detection in News Media, ACL 2019.
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Encoding Social Information

News texts that incorporate social 
network information using GCN are 
used for classification.

Chang Li and Dan Goldwasser, Encoding Social Information with Graph Convolutional Networks for Political 
Perspective Detection in News Media, ACL 2019.
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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Graph-based Dependency Parsing

Graph-based Dependency Parsing with Graph Neural Networks, Tao ji, Yunabin Wu, and Man Lan ACL 2019.

The deletion mutation on exon-19 of EGFR gene was present in 16 patients, while the L858E point mutation on exon-21 was noted in 10.
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All patients were treated with gefitinib and showed a partial response.
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Figure 1: An example document graph for a pair of sentences expressing a ternary interaction (tumors with
L858E mutation in EGFR gene respond to gefitinib treatment). For simplicity, we omit edges between
adjacent words or representing discourse relations.

work on n-ary relation extraction focused on sin-
gle sentences (Palmer et al., 2005; McDonald et al.,
2005) or entity-centric attributes that can be extracted
largely independently (Chinchor, 1998; Surdeanu
and Heng, 2014). Prior work on cross-sentence ex-
traction often used coreference to gain access to ar-
guments in a different sentence (Gerber and Chai,
2010; Yoshikawa et al., 2011), without truly model-
ing inter-sentential relational patterns. (See Section 7
for a more detailed discussion.) A notable excep-
tion is Quirk and Poon (2017), which applied distant
supervision to general cross-sentence relation extrac-
tion, but was limited to binary relations.

In this paper, we explore a general framework
for cross-sentence n-ary relation extraction, based
on graph long short-term memory networks (graph
LSTMs). By adopting the graph formulation, our
framework subsumes prior approaches based on
chain or tree LSTMs, and can incorporate a rich set of
linguistic analyses to aid relation extraction. Relation
classification takes as input the entity representations
learned from the entire text, and can be easily ex-
tended for arbitrary relation arity n. This approach
also facilitates joint learning with kindred relations
where the supervision signal is more abundant.

We conducted extensive experiments on two im-
portant domains in precision medicine. In both dis-
tant supervision and supervised learning settings,
graph LSTMs that encode rich linguistic knowledge
outperformed other neural network variants, as well
as a well-engineered feature-based classifier. Multi-
task learning with sub-relations led to further im-
provement. Syntactic analysis conferred a significant
benefit to the performance of graph LSTMs, espe-
cially when syntax accuracy was high.

In the molecular tumor board domain, PubMed-
scale extraction using distant supervision from a

small set of known interactions produced orders of
magnitude more knowledge, and cross-sentence ex-
traction tripled the yield compared to single-sentence
extraction. Manual evaluation verified that the accu-
racy is high despite the lack of annotated examples.

2 Cross-sentence n-ary relation extraction

Let e1, · · · , em be entity mentions in text T . Rela-
tion extraction can be formulated as a classification
problem of determining whether a relation R holds
for e1, · · · , em in T . For example, given a cancer
patient with mutation v in gene g, a molecular tumor
board seeks to find if this type of cancer would re-
spond to drug d. Literature with such knowledge has
been growing rapidly; we can help the tumor board
by checking if the Respond relation holds for the
(d, g, v) triple.

Traditional relation extraction methods focus on
binary relations where all entities occur in the same
sentence (i.e., m = 2 and T is a sentence), and
cannot handle the aforementioned ternary relations.
Moreover, as we focus on more complex relations
and n increases, it becomes increasingly rare that the
related entities will be contained entirely in a single
sentence. In this paper, we generalize extraction to
cross-sentence, n-ary relations, where m > 2 and T
can contain multiple sentences. As will be shown in
our experiments section, n-ary relations are crucial
for high-value domains such as biomedicine, and
expanding beyond the sentence boundary enables the
extraction of more knowledge.

In the standard binary-relation setting, the dom-
inant approaches are generally defined in terms of
the shortest dependency path between the two en-
tities in question, either by deriving rich features
from the path or by modeling it using deep neural

102
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Parsing with GCNs

Graph-based Dependency Parsing with Graph Neural Networks, Tao ji, Yunabin Wu, and Man Lan ACL 2019.
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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GNNs for Semantic Role Labeling

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, Diego Marcheggiani, Ivan Titov, EMNLP 2017.

semantic

syntactic
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GNNs for Semantic Role Labeling

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, Diego Marcheggiani, Ivan Titov, EMNLP 2017.

semantic

syntactic

closely related 
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GNNs for Semantic Role Labeling

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, Diego Marcheggiani, Ivan Titov, EMNLP 2017.

exploit syntactic information 
when predicting semantics
using GCN:
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GNNs for Semantic Role Labeling

Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, Diego Marcheggiani, Ivan Titov, EMNLP 2017.

Standard GCN layer

Handle over-
parameterized

Syntactic GCN layer
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Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, Diego Marcheggiani, Ivan Titov, EMNLP 2017.

Experiments

English dataset                                                                             Chinese dataset
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• Neural Machine Translation
• Text Generation
• Question Answering
• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation
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Incorporating Syntactic and Semantic Information in
Word Embeddings using GCNs

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.

Most existing word 
embedding utilize 
sequential context.
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SynGCN

Vocabulary explode:

Scientists
discover
scientists_subj
water_obj
mars_nmod

water
on
Mars
…
…

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.
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SynGCN

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.
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SemGCN

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.
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Training word embedding

Target embedding

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.
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Experiments

Shikhar Vashishth, Manik Bhandari et al., Incorporating Syntactic and Semantic Information in Word 
Embeddings using Graph Convolutional Networks, ACL2019.
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• Neural Machine Translation
• Text Generation
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• Information Extraction
• Sentiment
• Social Classification
• Syntactic Parsing
• Semantic Role Labeling
• Word Embedding
• Sentence Representation



Sentence-state LSTM
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Bi-LSTM suffer various 
limitations due to their 
sequential nature



Sentence-state LSTM
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

View the whole sentence as a 
single state, and we update the 
sub-states for individual words 
and than overall sentence-level 
state.

Word state

Sentence state



Text classification
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Movie review development results.



Text classification
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Test set results on movie review dataset.



Text classification
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Results on the 16 
datasets, time format: 
train(test)



Sequence labelling
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Results on PTB (POS tagging).



Sequence labelling
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Results on CoNLL03 (NER).



Analysis
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Yue Zhang, Qi Liu et al., Sentence-State LSTM for Text Representation, ACL 2018.

Time against sentence length.



Conclusion of this talk

• Graph neural network (GNN) and its applications on 
several major NLP tasks;

• Thoughts on effective methods. 
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