Frontiers in Network Embedding and GCN

Peng Cui

Tsinghua University



Network (Graph)

The general description of data and their relations
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Why network is important?

Can you name a case where you only care about an
object but not its relations with other subjects?
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Reflected by relational subjects Decided by relational subjects



Graph/network data is everywhere

Social Networks Biology Networks Finance Networks
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Many applications are intrinsically network problems

Link prediction in
Recommendation Systems bipartite graphs
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Many applications are intrinsically network problems

Financial credit & risk management Node importance & classification
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Many applications are intrinsically network problems

New material discovery Subgraph pattern discovery

Materials discuvery engine concept
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Traditional methods - graph theory

Real networks

Graph Centrality Problem

Theory  |somorphism Problem : :
.

Routing Problem

Billion
Challenge 1: Scale nodes




Traditional methods - graph analysis

Real N’elt\’(vorks Graph Patterns Applications

Power-law
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Link prediction

Community detection

Anomaly detection

Challenge 2: Complexity and Diversity




R
From graph theory and analysis to learning

Progressive development of learning related fields

Feature Feature Representation End-to-end
Raw Data Crafting Selection Learning Learning




R
From graph theory and analysis to learning

Provide general learning solutions to various tasks over a diverse
range of complex networks.

Feature Feature Representation End-to-end
Raw Data Crafting Selection Learning Learning
Graph Theory Graph Feature Network Graph Neural

and Analysis Selection Embedding Network
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Networks are not /earning-friendly

Pipeline for network analysis

Network
Inapplicability of bata
ML methods - lt
eature
ﬁ ExtractiQs

Network
Applications




Learning from networks

Network

Embedding
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Network Embedding

G=(V,E) G=(V)

Vector Space

generate A
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embed ,

Easy to parallel

Can apply classical ML methods
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The goal of network embedding

[ Goal Support network inference in vector space ]
Reflect network Maintain network
structure properties

i Transitivity
Transform network nodes into vectors that are fit for

off-the-shelf machine learning models.
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Graph Neural Networks

Design a learning mechanism on graph.

1 Basic idea: recursive definition of states
si= Y f(si,sj,F,}/,F}”,Ffj)
JEN(2)
0 A simple example: PageRank

1= o (- la .l - LaayLe 1) X2 . X3, X4, X6 . o, 1z, lg. 1)
R [ N

L ssr7 X nefl L nefn
F. Scarselli, et al. The graph nédral network mi)ael. IEE[I:l TNN, 2009.
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Network Embedding

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding
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Network Embedding

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding
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Network Structures

Nodes & Links
\ 4

Pair-wise Proximity

\ 4

Community Structures

$
Hyper Edges

\ 4

Global Structure




Nodes & Links
[ Reconstruct the original network }
Matrix Factorization
P V] _ k
A
- 'V e
= M = Wt X H
Y
Adjacency Matrix Embedding Matrix

Reconstruct all the links? May cause overfitting.

The network inference ability is seriously limited.
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Network Structures

Nodes & Links
o

Pair-wise Proximity

\ 4

Community Structures

$
Hyper Edges

\ 4

Global Structure
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High-Order Proximity

Capturing the underlying structure of networks

Second-order
Proximity

First-order
Proximity

Advantages:
Solve the sparsity problem of network connections

Measure indirect relationship between nodes
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Deepwalk

Exploit truncated random walk to define neighborhood of a node.

Random Walks on Graph
V26 _ VZS _ V32 _ V3 _ VIO---
Ve =V, = Vi — Ve — Vi ...
V31 o V33 o V21 o V33 o V15

& (v;) mEEEm

(a) Random walk generation. (b) Representation mapping. (c) Hierarchical Softmax.

B. Perozzi et al. Deepwalk: Online learning of social representations. KDD 2014.
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Jian Tang et al. LINE: Large-scale Information Network Embedding. WWW 2015.
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SDNE - Structural Deep Network Embedding
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Daixin Wang et al. Structural Deep Network Embedding. KDD, 2016.
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What is the right order?

Different networks/tasks require different high-order proximities
E.g., multi-scale classification (Bryan Perozzi, et al, 2017)

E.g., networks with different scales and sparsity
Proximities of different orders can also be arbitrarily weighted
E.g., equal weights, exponentially decayed weights (Katz)



What is the right order?

Existing methods can only preserve one fixed high-order proximity
Different high-order proximities are calculated separately
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-> How to preserve arbitrary-order proximity while guaranteeing accuracy and
efficiency?
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Problem Formulation

High-order proximity: a polynomial function of the adjacency matrix
S=f(4) =wi A + w A% + - + w,AY

q: order; w;...w,: weights, assuming to be non-negative

A: could be replaced by other variations (such as the Laplacian matrix)

Obijective function: matrix factorization

U*,V* € RVNX4: |eft/right embedding vectors

d: dimensionality of the space

Optimal solution: Singular Value Decomposition (SVD)
U, %, V]: top-d SVD results
=UVE, V*=VVZ

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Eigen-decomposition Reweighting
Eigen-decomposition reweighting

THEOREM 4.2 (EIGEN-DECOMPOSITION REWEIGHTING). If[A, x]
is an eigen-pair of A, then [F (A), x] is an eigen-pair of S = F(A).

Efficient!
Eigen-decomposition
A A X
Polynomial F(-) Efficient! l Polynomial F(-)

S Eigen-decomposition  [F(A) X

Insights: high-order proximity is simply re-weighting dimensions!

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.
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Preserving Arbitrary-Order Proximity

Shifting across different orders/weights:

Embedding1
Shifting
/ Embedding?2
Eigen-decomposition P y /
? Embedding3
Embedding4
Efficient!

Preserving arbitrary-order proximity
Low marginal cost
Accurate and efficient

Z. Zhang, et al. Arbitrary-Order Proximity Preserved Network Embedding. KDD, 2018.



Experimental

Link Prediction
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Network Structures

Nodes & Links
\ 4

Pair-wise Proximity

\ 4

Community Structures

$
Hyper Edges

> 4

Global Structure




Motivation

Vertexes in different parts of the network o 1
may have similar roles(global position) ' |

Example:
Managers in the social network of a

company | - N
Outliers in a network in the task of Social network with different positio

anomaly detection

How to reflect the role or importance of a vertex in

embedding space?
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Existing embedding methods

Second-order

1 .
P t
Q roximity 8
A% (

They can only preserve local proximity(Structural equivalence), can not reflect
the global position

Embeddings of node 5,6 in left network will be similar but embeddings of node 1, 2 in
right network will not be similar.



Regular Equivalence

Two nodes are regularly equivalent if their network neighbors are themselves similar
(i.e. regularly equivalent).

Z — g

- Structural equivalence s - Regular equivalence r
* N(w) = N(v) - {r@li e Nwi= {r(lj € N(v)}
- Direct way - Recursive way
- Common neighbors - Similar global position

Regular equivalence is largely ignored in network embedding
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Naive Solutions

Basis. two regularly equivalent nodes should have similar embeddings

1. Explicitly calculate the regular equivalence of all vertex pairs

infeasible for large-scale networks due to the high complexity of calculating
regular equivalence
2. Replace regular equivalence into simpler graph theoretic metrics
centrality measures
one centrality can only capture a specific aspect of network role
some centrality measures also bear high computational complexity

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Deep Recursive Network Embedding

- The definition of regular equivalence is recursive
- Aggregating neighbors’ information in a recursive way

Li= Z IXo — Agg({Xulu € N(©)DI|3,

veV

- How to design the aggregating function
- Variable length of neighbors

- Highly nonlinear
- = Layer-normalized LSTM

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Deep Recursive Network Embedding

reconstruct
i >
©® O—D—D .
“““““ \ LN p{ LN P LN
Y ® | ) /) )
I" - C,D : LS;_M LS;_M LS;_M MLP
< @ G- .
T 35 E
. ® e = ___¥,
(b) (c) (d)

(a) Sampling neighborhoods

(b) Sorting neighborhoods by their degree
(c) Aggregate neighbors

(d) A Weakly guided regularizer

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Theoretical Analysis

THEOREM 3.5. Ifthe centrality C(v) of node v satisfies that C(v) =
2ueN(w) F(u)C(u) and F(v) = f({F(u),u € N(v)}) where f is any

computable function, then C(v) is one of the optimal solutions of our

model.

Centrality Definition C(v) Fv) | f({xi})

Degree dy = ZuEN[v}I{du} 1/dy | 1/(X 1(x:))
Eigenvector | 1/4* X, epne)Clu) | 1/4 mean

PageRank | X epn(o) 1/dy = Clu) | 1/dy | 1/(2 1(x;))

Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Experiment --- predict centrality

centrality | closeness | betweenness | eignvector | k-core
DeepWalk 0.6016 3.7188 2.1543 13.2755
LINE 0.5153 4.3919 1.5072 15.8179
node2vec 1.0489 3.4065 3.9436 39.2156
strucZvec 0.2365 0.25371 1.0544 6.0858
DRNE 0.1909 0.1261 0.5267 5.5683

The MSE value of predicting centralities on Jazz dataset (* 10-2)

| centrality | closeness | betweenness | eignvector | k-core |

DeepWalk 0.2982 1.7836 1.1194 19.7016
LINE 0.3979 1.8425 1.5167 34.9079
node2vec 0.3573 1.6958 1.1432 24.1704
struc2vec 0.2947 1.6018 1.0445 25.3047
DRNE 0.1101 0.6676 0.3108 7.7210

The MSE value of predicting centralities on BlogCatalog dataset (* 10-2)
Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Experiment - Structural Role Classification

—8— Deepwalk == node2vec =p=—= DRNE -4 betweenness =de= kCore
=N LINE —g=— struc2vec —4= closeness == eigenvector W=  combined
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Ke Tu, et al. Deep Recursive Network Embedding with Regular Equivalence. KDD, 2018.
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Section Summary

Nodes & Links —

$
Node Neighborhood

\ o

Pair-wise Proximity

‘ —

Community Structures Application
9 Characteristics

Hyper Edges
).

Global Structure —

Network
Characteristics
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Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding
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Why preserve network properties?

Heterogeneity . ¢
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Transitivity

The Transitivity Phenomenon

Embedding Space

Network

Triangle Inequality4, B) + D(B,C) > D(A4,C)
-

A close to B, B close to C, — A relatively close
to C

However, real network data is complex...
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Non-transitivity

The Co-existence of Transitivity and Non-transitivity

Image network Social network

Cellphon = - Banana

How to incorporate non-transitivity in embedding space?
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Asymmetric Transitivity

Directed Network A—B,B - C=>A— C, butnot C —A
0.03 0.012
g 0.025 \ . E o.o1ﬁ
2 Forward 2
8 0.02| ] 8 0.008
e e
o onwars o orwal
g 0.013 z ;ackw:rd i g 2008 i ;ackw:rd
'§ 0.01] Backward % g4
Q
E 0.005 1 \E”ﬂ'ou
Forward Transitive i ] O L o
————————— 10" 10! 10° 10° 10" 0 5 10 15
Number of 2-hop path Number of 2-hop path

Backward Transitive Tencent Microblog Twitter

Distance metric in embedding space is symmetric.

How to incorporate Asymmetric Transitivity?



Non-transitivity

The source of non-transitivity:
Each node has multiple similarity components

Non-transitive Transitive

/ Object SC

Transitive

T

Scene

Non-transitive Embedding: represent non-transitive data
with multiple latent similarity components

M. Ou, et al. Non-transitive Hashing with Latent Similarity Components. KDD, 2015.



Asymmetric Transitivity

All existing methods fail..

S
Seh

Mingdong Ou, Peng Cui, Jian Pei, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.

p
Single Vector
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Uncertainties in Networks

The formation and evolution of real-world networks are full of uncertainties
E.g., for the nodes with low degree, they contain less information and thus their
representations bear more uncertainties than others.

E.g., for the nodes across multiple communities, the possible contradiction between their
neighboring nodes may also be large and thus cause the uncertainty.
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DVNE for Structure and Uncertainty

Parameter sharing

.'. i

[ z/00000
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Node i k Node j f I Node k “
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Figure 1: The framework of DVNE.

Dingyuan Zhu, et al. Deep Variational Network Embedding in Wasserstein Space. KDD, 2018.



———EREEEEEE
Section Summary

- Compared with network structures, network properties have large

space to explore in network embedding.
- Transitivity is important for network inference.
- Uncertainty provides evidence in making network inference.

- Many other property issues:

- The right embedding space: Euclidean space?

- Power-law distribution



B ———
Outline

. Structure-preserved network embedding
. Property-preserved network embedding

. Dynamic network embedding
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Dynamic Networks

- Networks are dynamic in nature
- New (old) nodes are added (deleted)
- New users, products, etc.
- The edges between nodes evolve over time

- Users add or delete friends in social networks, or neurons establish new connections in
brain networks.

- How to efficiently incorporate the dynamic changes when networks
evolve?

Time
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Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- lll: Aggregated error

- IV: Scalable optimization
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Challenge: High-order Proximity

- High-order proximity

- Critical structural property of networks e

‘e
e, *e
e,

- Measure indirect relationship between nodes

- Capture the structure of networks with different
scales and sparsity
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Network Embedding V.S. Traditional Graph Embedding
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Challenge: High-order Proximity

: Out-of-sample nodes

: Incremental edges

: Aggregated error

: Scalable optimization
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Somety
Preserve High-order Proximities

Preserve High-order Proximities
~_F
Local Change leads to Global Updating
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Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- lll: Aggregated error

- IV: Scalable optimization



Problem

- To infer embeddings for out-of-sample nodes.

G=(V,E)

G' = (V',E)

7

4

.

~N

7

G=(V, E) evolves into G'=

In-Sample Nodes

(V’, E’), where V'=V u V™.

n old nodes: V = {v1,...,vn}, m new nodes: V* = {vn+1,...,vn+m}
Network embedding: f: V—-Rd

We know f(v) for old nodes, want to infer f(v) for new nodes.
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Challenges

- Preserve network structures
- e.g. high-order proximity
- need to incorporate prior knowledge on networks

- Share similar characteristics with in-sample embeddings
- e.g. magnitude, mean, variance
- requires a model with great expressive power to fit the data well

- Low computational cost

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.
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Specific vs. General

- Specific
- A new NE algorithm capable of handling OOS nodes.

- General
- A solution that helps an arbitrary NE algorithm handle OOS nodes.

- We propose a general solution.

- But it can be easily integrated into an existing NE algorithm (e.g. DeepWalk)
to derive a specific algorithm (see the paper).

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.



DepthLGP

- Nonparametric probabilistic modeling + Deep Learning

Probabilistic Inference
.

Out-of-Sa{’nple Nodes

In-Sample Nodes lH

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.

Deep Neural Network
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DepthLGP

- Design a kernel for the kth (k=1,...,s) dimension of h(:)

\ [
Ki 2 [T4{nLA ] +[GLAAL)]

A, £ diag(ay)A'diag(a),

2 (%) 4(K) (k) N1
s 7Rl T R i |

\

p—y

"The matrix inversion can be bypassed without approximation.

2alk), indicates how much attention we pay to a node. It is learned for an in-
sample node, but fixed to one for an OOS node, as we are always interested
iIn OOS nodes.
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Task I: Classification

Baselines This Work Upper Bound
Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP  (rerunning)

Macro-F1(%) LINE DBLP 37.89 42.15 40.83 47.33 48.25 (49.07)
PPI 10.52 10.02 12.42 13.42 13.72 (13.91)
BlogCatalog 13.25 11.30 17.07 17.41 18.03 (18.90)
GraRep DBLP 50.61 55.79 55.02 57.43 58.67 (62.92)
PPI 13.65 L35 12.38 14.80 14.84 (15.33)
BlogCatalog 14.76 14.80 14.71 15.94 18.45 (20.15)
node2vec DBLP 53.83 59.34 5925 60.89 62.63 (64.87)
PPI 15.05 13.43 13.78 15.85 16.54 (16.81)
BlogCatalog 15.10 14.04 19.16 19.77 20.32 (20.82)
Micro-F1(%) LINE DBLP 49.58 50.49 50.88 54.01 54.94 (55.84)
PPI 18.10 15.71 18.81 20.71 21.42 (21.43)
BlogCatalog 27.40 23.21 30.79 31.36 31.90 (32.20)
GraRep DBLP 60.17 60.62 60.48 61.44 62.29 (65.44)
PPI 20.23 20.35 20.23 20.79 21.44 (21.88)
BlogCatalog 36.44 30.79 33.90 317.57 38.14 (38.37)
node2vec DBLP 60.54 62.29 62.52 62.83 64.56 (65.63)
PPI 19.70 18.25 18.25 22.63 23.11 (23.41)
BlogCatalog 34.83 25.82 36.94 37.96 39.64 (40.34)

Jianxin Ma, et al. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in Dynamic Networks. AAAI, 2018.
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Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- lll: Aggregated error

- IV: Scalable optimization
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The Static Model

We aim to preserve high-order proximity in the embedding
matrix with the following objective function:

min ||S — UU""||%

where S denotes the high-order proximity matrix of the network
U and U’ is the results of matrix decomposition of S.

For undirected networks, U and U’ are highly correlated.
Without loss of generality, we choose U as the embedding matrix.

Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.
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GSVD

We choose Katz Index as S because it is one of the most
widely used measures of high-order proximity.

SK#I'EZZ- o Ma—lhf]:b
M, = (I — BA)
M, = A

where [3 is a decay parameter, | is the identity matrix and A is the adjacency
matrix

According to HOPE, the original objective function can be
solved by the generalized SVD (GSVD) method



R
Generalized Eigen Perturbation

-\We propose generalized eigen perturbation to fulfill the task.
- The goal of generalized eigen perturbation is to update X® to X(t+1)

- Specifically, given the change of adjacency matrix AA

between two consecutive time steps, the change of Ma and
Mb can be represented as:

AM, = —BAA, and AM, = SAA

Dingyuan Zhu, et al. High-order Proximity Preserved Embedding For Dynamic Networks. IEEE TKDE, 2018.



R
Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- lll: Aggregated error

- IV: Scalable optimization



B
Problem: Error Accumulation

Eigen perturbation is at the cost of inducing approximation

Ao g Uo 20 Vo
U Update
A ~ Ui | Sy V.’ Error
Accumulation!
U Update
A ~ Uy > V¢

Problem: error accumulation is inevitable
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Solution: SVD Restarts

Solution: restart SVD occasionally

AO SVD UO ZO VO
U Update
A1 U1 Z1 ’ V1 ’
SVD o | [ = v,
Restart A — ‘
Update
When? U
A1 Upd' | | 21 Vier

What are the appropriate time points?
Too early restarts: waste of computation resources
Too late restarts: serious error accumulation



Naive Solution

Normalized Number of Edges

Naive solution: fixed time interval or fixed number of changes
Difficulty: error accumulation is not uniform
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Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



EX|st|ng Method

Existing method: monitor loss (Chen and Candan, KDD 2014)
Loss in SVD:

S: target matrix, [U, %, V]: results of SVD
Problem: loss includes approximation error and intrinsic loss in SVD

J=1S—UzvT|

BB

FACEBOOK

INTERNET

MATH

WIKI

-
0

-
N

=
0

o
A

Normalized Change of Loss

2 4 6 8

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Framework: Monitor Margin

Observation: the margin between the current loss and intrinsic loss
in SVD is the actual accumulated error

Current loss: J = ||S — UZVT||2

S -yt

Intrinsic loss: L(S,k) = min

2
, k: dimensionality
u*z*v* F

5.5

—— Current Loss

5t |—Intrinsic Loss in SVD

45

Loss

4+

Intrinsic in SVD

35T

3 1 1 1 1 1 1 1 [l 1
0 10 20 30 40 50 60 70 80 90 100
Time Slice

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Solution: Lazy Restarts
Lazy restarts: restart only when the margin exceeds the threshold
Problem: intrinsic loss is hard to compute
Direct calculation has the same time complexity as SVD
Relaxation: an upper bound on margin
A lower bound on intrinsic loss £ (S ,k )
J(t) — L(S¢, k) & J(t) — B(t).

ﬁ(St, k) - B(t)
J (t ). currentloss; £ (S _t ,k ):intrinsic loss; B (t ): bound of intrinsic loss

L(S:, k) > B(t) =

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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A Lower Bound of SVD Intrinsic Loss

|dea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). If S
and AS are symmetric matrices, then:

L(S + AS, k) > L(S,k) + Atr®*(S + AS, S) ZA;
where A\ > Ao... > A are the top-k eigenvalues of Vg2 =
S-AS+AS-S+ AS-AS, and

Atr®(S +AS,S) =tr ((S + AS) - (S+ AS)) —tr(S - S).

Intuition: treat changes as a perturbation to the original network

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn
(13)is O(Mg + Mpk + Nrk?), where Mg is the number of
the non-zero elements in AS, and Ny, M, are the number
of the non-zero rows and elements in V g2 respectively.

e Ifevery node has a equal probability of adding new edges,
we have: M; ~ 2d,,,Mg, where d,,, is the average
degree of the network .

e For Barabasi Albert model (Barabdsi and Albert 1999), a
typical example of preferential attachment networks, we
have: M}, ~ 13 [log(dmas) + 7] Ms, Where dy,q. is the
maximum degree of the network and v ~ 0.58 is a con-
stant.

Conclusion: the complexity is only linear to the local dynamic changes

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.



Experimental Results: Approximation Error

Fixing number of restarts

—— avg(r) max(r)

‘ TIMERS | LWI2 | Heu-FL | Heu-FT | TIMERS | LWI2 | Heu-FL | Heu-FT
FACEBOOK | 0.005 0.020 | 0.009 0.011 0.014 0.038 0.025 0.023
MATH 0.037 0.057 0.044 0.051 0.085 0.226 0.117 0.179
WIKI 0.053 0.086 0.071 0.281 0.139 0.332 0.240 0.825
DBLP 0.042 0.110 | 0.053 0.064 0.121 0:386 | 0.198 0.238
INTERNET 0.152 0218 | 0.196 0.961 0.385 0.806 | 0.647 1.897

Fixing maximum error \

2 12]

%10-

3 o B 1MERS
] I Heu-FL
A ey | Heu-FT

<l EDREE] MURE] AR HRER =

E O-L /

FACEBOOK  MATH WIKI DBLP INTERNET

Ziwei Zhang, et al. TIMERS: Error-Bounded SVD Restart on Dynamic Networks. AAAI, 2018.
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Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- lll: Aggregated error

- IV: Scalable optimization
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Highly-dynamic & Recency-sensitive Data

- News recommendation applications: a bipartite graph

- WeChat news recommendation network is highly dynamic
- 81 articles and 1400 reading records per second

- The network is also recency-sensitive

- >73% articles died less than 6 hours while no one read again
- Obvious exponential decay for article duration length.

4500 18000 1E+6 .

4000 16000
w = U EES
2 3500 © 14000 2 :
b o 9 i,
= 3000 £12000 5 1E+4 -
5o 2 1‘ 1 ‘ M. s Wi
52500 Z10000 AR (N HmL 5 i iy
o 2000 { © 8000 | | e ¥ = 1768. e 0. 006x g
% 1500 2 6000 ‘ 1B
= = E
5 1000 = 4000 2 1E+1 1
500 2000 :
0 0 1E+0 :
1E+0 1E+1 1E+2 1E+3

200
time stamp / hour

200 400
time stamp / hour

article duration / hours

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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Limited resources

- We cannot guarantee convergence in-between every two timestamps.
- Just do it.

- How to do better?
- Non-uniform resource allocation.
- New edges and nodes worth more resources.

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)



Diffused SGD: Step-wise Weight Diffusion Mechanism

- The Change of a node embedding vector

depends on its distance to the
changed edge.

- Diffuse across training steps

- For step r, if edge (i,)) is
chosen by stochastic method

For edge (i, j), we have
pij(r) & te (i.pi j(r = 1)) ;
for (i,k) e EA k # j, we use
Pik(r) — pip(r — 1)+ 1 (,p5,i(r — 1)) ;
and for other edges (I,k) e EA L # i,
pri(r) < pri(r—1);

2-norm of the difference
=
o
n

y = 0.0148e2 259

» i :
\:__l\ average

0

/.

2 4 6
distance to the new edge

Xumin Chen, et al. Scalable Optimization for Embedding Highly-Dynamic and Recency-Sensitive Data. KDD, 2018.(Applied)
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Section Summary

| : Out-of-sample nodes

DepthLGP = Non-parametric GP + DNN

Il : Incremental edges

DHPE: Generalized Eigen Perturbation

lll: Aggregated error

TIMERS: A theoretically guaranteed SVD restart strategy

IV: Scalable optimization

D-SGD: A iteration-wise weighted SGD for highly dynamic data



From Network Embedding to GCN
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Graph Convolutional Networks (GCN)

o Main idea: pass messages between pairs of nodes & agglomerate
HA = ) (f)—%Af)—%Hl@l)

0 Stacking multiple layers like standard CNNs:

0 State-of-the-art results on node classification

Hidden layer Hidden layer
' ' N
® »
. ® "/ e
e —
. e ® i
® ®
@ @
Input . . Output
® ®
@ / ®
> _ L ReLU | o— ReLU N
L 1 ] ® @ @
. ® ° a _' ° & _b b °
e ® o ® o ® s
e ® .
L ] [ ]
® ®
¢ o *—«
« ° o« °
e ® ‘
L * D
N S J

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.



A brief history of GNNs

“Spatial methods” Relation Nets
P Mtdntilri?iil Santnrn at al :raphSAGE
: amilton et al.
Original GNN GG-NN (e Programs as Graphs [NIPS 2017)
= Gorietal. ™= Lietal Negealfie [ Al,lin?infn? =
(2005) (ICLR 2016) : NRI
Gilmer et al. <ipf et al
(ICML 2017) GAT ﬂ -
Velitkovié etal. ML-2018)
(ICLR 2018)
GCN
Kipf & Wellin .
(iF():LR 201 7)g “DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

GSpicgﬂN ChebNet ) )  Niepert et al. (ICML 2016)
iy _ Defferrard et al. | Spectral methods _ Battaglia et al. (NIPS 2016)
Bruna et al. NIPS 2016 - Atwood & Towsley (NIPS 2016)
ICLR 2015 ( )
( ) _ Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNs)
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Technical challenges in real applications

Robustness Interpretability Applicability

Hot directions in computer vision:

Explainable Scalable

before pruning after pruning

pruning __ 5
synapses

pruning
neurons

Configuration




Robustness in network embedding

OAdversarial attacks
Osmall perturbations in graph structures and node attributes

Ogreat challenges for applying GCNs to node classification

Results for attacking Citesesar data
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Adversarial Attacks on GCNs

OCategories

O Targeted VS Non-targeted

O Targeted: the attacker focus on misclassifying some target nodes

O Non-targeted: the attacker aims to reduce the overall model performance
ODirect vs Influence

O Direct: the attacker can directly manipulate the edges or features of the target

nodes
O Influence: the attacker can only manipulate other nodes except the targets

OHow to enhance the robustness of GCNs against adversarial attacks?



Robust Graph Convolutional Networks

CdAdversarial attacks in node classification

0 Connect nodes from different communities to confuse the classifier

ODistribution V.S. plain vectors

OPlain vectors cannot adapt to such changes
OVariances can help to absorb the effects of adversarial changes

O Gaussian distributions -> Hidden representations of nodes
Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.
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The Framework of RGCN

| sample &
| - Mt o
' — Ter Dj.‘ipemﬁc
: Function |
Feature / '
matrix L A wew | : ¥ '

L L N L N |
e ®® \ iance-hased Variance-based |
L X N X | Attention | Attention j
Gaussian Based hidden representations: Attention mechanism: Sampling process:
Variance terms absorb the Remedy the propagation Explicitly considers mathematical
effects of adversarial attacks of adversarial attacks relevance between means and

variances
Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.
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Experimental Results

[0 Node Classification on Clean Datasets

Cora | Citeseer | Pubmed
GCN 81.5 70.9 79.0
GAT 83.0 79 79.0
RGCN | 83.1 71.3 79.2

0 Against Non-targeted Adversarial Attacks

Cora Dataset i Citeseer Dataset i Pubmed Dataset
—&—=RGCN

Accuracy

d
o
(5]

Q0.5 :
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Ratio of Noise Edges Ratio of Noise Edges Ratio of Noise Edges

Figure 2: Results of different methods when adopting Random Attack as the attack method.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu. Robust Graph Convolutional Networks Against Adversarial Attacks. KDD, 2019.



Interpretability of network embedding

A real-world graph is typically formed due to many latent factors.

O Existing GNNs/GCNs:

O A holistic approach, that takes in
the whole neighborhood to produce
a single node representation.

O We suggest:
O To disentangle the latent factors.

(By segmenting the heterogeneous parts, and learning
multiple factor-specific representations for a node.)

O Robustness (e.g., not overreact to an irrelevant
ractor) & INnterpretability.
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Disentangled Representation Learning

- That is, we aim to learn disentangled node representation,

- Arepresentation that contains independent components, that describes different aspects (caused by
different latent factors) of the observation.

- The topic is well studied in the field of computer vision.

- But largely unexplored in the literature of GNNs.

Example. Three dimensions that are related skin color, age/gender, and saturation, respectively.
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Method Overview

- We present DisenGCN, the disentangled graph convolutional network.

- DisenConv, a disentangled multichannel convolutional layer (figure below).
- Each channel convolutes features related with a single latent factor.

{

conc

EET
Layer

Layer Input
y & Output

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Neighborhood Routing: Hypothesis |

- A neighbor is patched to channel k (for further in-channel graph convolution), if
the edge between the neighbor and the center node is caused by factor k.

- But the actual causes are unknown. Neighborhood routing is therefore proposed
to infer the latent causes, based on two hypothesis.
- The first is analogous to the second-order proximity.

Hypothesis 1. Factor k is likely to be the reason why node
u connects with a certain subset of its neighbors, if the
subset 1s large and the neighbors 1n the subset are similar
w.r.t. aspect k, 1.e., they form a cluster in the kth subspace.

- It inspires us to search for the biggest cluster in each of the K subspaces.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.
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Neighborhood Routing: Hypothesis li

- The second hypothesis is analogous to the first-order proximity.
Hypothesis 2. Factor £ is likely to be the reason why node
u and neighbor v are connected, if the two are similar in
terms of aspect k.

- Hypothesis 2 is not robust if either x,, or x,, misses features about aspect k, and
therefore must be combined with Hypothesis 1. But it can provide a fast guess.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Results: Multi-label Classification
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Figure 2. Macro-F1 and Micro-F1 scores on the multi-label classification tasks. Our approach consistently outperforms the best performing
baselines by a large margin, reaching 10% to 20% relative improvement in most cases.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.
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Results: On Synthetic Graphs

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

Number of latent factors

Method 4 6 3 10 12 14 16
GCN 78.78 £ 1.52 65.73 £ 1.94 46.55 == 1.55 37.37 £ 1.52 2449 4+ 1.03 18.14 £ 1.50 16.43 £ 0.92
GAT 83,77 422,32 60.89 3,75 45.88 3,79 36,72 £3.08 24.77 347 20.89 & 3.07 19,53 == 3,97

DisenGCN (this work) 93.84 + 1.12 74.68 + 1.92 54.57 + 1.79 43.96 + 1.45 28.17 + 1.22 23.57 + 1.28 21.99 + 1.34
Relative improvement  +12.02% +13.62% +17.23% +17.63% +13.73% +12.83% +12.6%

Improvement is larger when #factors is relatively large (around 8).
However, all methods are bad when #factors is extremely large.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.
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Results: Correlations between the Neurons
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(b) DisenGCN (this work).

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu. Disentangled Graph Convolutional Networks. ICML, 2019.



Applicability of network embedding and GCN

O Link Prediction
O Community Detection

‘@@ O Hiah-
0w High-order

0 Node Classification
0 Network Distance
O Node Importance

I
1 * Leading to a large number of hyperparameters |-
:_- Must be carefully tuned AutoML
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AutoML

« Ease the adoption of machine learning and reduce the reliance on human
experts
* e.g., hyperparameter optimization
« Largely unexplored on network data

« Large scale issue:
« Complexity of Network Embedding is usually at least O(E)
« E is the number of edges (can be 10 billion)

 Total complexity: O(ET), T is the times searching for optimal
hyperparameters

How to incorporate AutoML into massive network embedding efficiently?



I ———————
AutoML for network embedding

« A straightforward way: configuration selection on sampled sub-networks

@ Ko
) ®
@
e © » ® i J® a .
= ol
o @ ." ® =9
® o e e
® @
¢ : ® @ L ’ : @ »
- B * o
Sampled sub-network Origin massive network

Optimal configuration 6

« Transferability
« 6 # optimal configuration on origin network
« Heterogeneity
« several highly heterogeneous components => carefully designed sampling

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.
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Transfer the knowledge about optimal hyperparameters

from the sub-networks to the original massive network

Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Experiment --- Sampling-Based NE
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The performance achieved within various time thresholds.
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Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, Wenwu Zhu. AutoNE: Hyperparameter Optimization for Massive Network Embedding. KDD, 2019.



Network Embedding v.s. GCN



Gra P h convolutional network V.S. Network embedding

In some sense, they are different.
Graphs exist in mathematics. (Data Structure)
Mathematical structures used to model pairwise relations between

objects
Networks exist in the real world. (Data)
Social networks, logistic networks, biology networks, transaction

networks, etc.

A network can be represented by a graph.
A dataset that is not a network can also be represented by a graph.



GCN for Natural Language Processing

- Many papers on BERT + GNN. ( "
y pap System 2 (GNN) coisie o
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P I i
_ . A[a:]{ AN
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Cognitive Graph for Multi-Hop Reading Comprehension at Scale. Ding et al., ACL 2019.
Dynamically Fused Graph Network for Multi-hop Reasoning. Xiao et al., ACL 2019.



R
GCN for Computer Vision

- A popular trend in CV is to construct a graph during the learning process.
- To process multiple objects or parts in a scene, and to infer their relationships.

- Example: Scene graphs.

node message pooling scene graph
. imal inbound o G|
object proposal primal | . age states - ; :
JRELRIOR = graph o | edge |
- el node o node !
Edge .l':)-g\c;‘ sfate message i
| ] ! - —_—
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a5 -
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passing passing |
-
i - K = m=m
e q‘}: edge pooling GRU . mountuin —behind —horse
i 3 state message I - !
(0-30} : riding
— 2o - man = weating -t
- e .
wearing —- shirt
T&0 edge message pooling T=1 T=2 T=N T
(a) (b) (c) (d)

Scene Graph Generation by Iterative Message Passing. Xu et al., CVPR 2017.
Image Generation from Scene Graphs. Johnson et al., CVPR 2018.



e
GCN for Symbolic Reasoning

- We can view the process of symbolic reasoning as a directed acyclic graph.
- Many recent efforts use GNNs to perform symbolic reasoning.

alphabet (concepts)

The State Machine table /
2 P trapsitions
yellow = Color: brown (0.92) ===
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; ) coffee Posture! sitting (0.82)
What is the red fruit inside the bowl ; mker r[gh-r m inside ; apple .
to the right of the coffee maker? - \
\ instructions properties disentangled

representation

Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton.

Learning by Abstraction: The Neural State Machine. Hudson & Manning, 2019.
Can Graph Neural Networks Help Logic Reasoning? Zhang et al., 2019.
Symbolic Graph Reasoning Meets Convolutions. Liang et al., NeurlPS 2018.



GCN for Structural Equation Modeling

- Structural equation modeling, a form of causal modeling, tries to describe the
relationships between the variables as a directed acyclic graph (DAG).

- GNN can be used to represent a nonlinear structural equation and help find
the DAG, after treating the adjacency matrix as parameters.
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o a | ellal o 5 4 68 8 10 Figure 8. Estimate protein signaling network.

DAG-GNN: DAG Structure Learning with Graph Neural Networks. Yu et al., ICML 2019.



E——————
Pipeline for (most) GCN works

Graph End task

Raw Data Construction




e
Network embedding: topology to vector

- Co-occurrence (neighborhood)

e —
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e
Network embedding: topology to vector

- High-order proximities




Network embedding: topology to vector

- Communities

o
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Network embedding: topology to vector

- Heterogeneous networks
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e
Pipeline for (most) Network Embedding works

Network Network Downstream End task

Data Embedding Model




Learning for Networks vs. Learning via Graphs

Learning Via Graphs

Network
Embedding

Learning for networks



e
The intrinsic problems NE is solving

Reducing representation dimensionality while preserving necessary
topological structures and properties.

Nodes & Links ansitivity
Node Neighborhood \\eo ansitivity
Pair-wise Proximity certainty

Community Dynamic
Hyper Edges Heterogeneity

Global Structure Interpretability




The intrinsic problem GCN is solving

Fusing topology and features in the way of smoothing features with
the assistance of topology.




e
What if the problem is topology-driven?

O Since GCN is filtering features, it is inevitably feature-driven
O Structure only provides auxiliary information (e.g. for filtering/smoothing)

O When feature plays the key role, GNN performs good ...
O How about the contrary?
O Synthesis data: stochastic block model + random features

Method Results
Random 10.0
GCN 18.3+1.1
DeepWalk | 99.0X0.1




Network Embedding v.s. GCN

There is no better one, but there is more proper one.

Network GCN Feature-based
Embedding Learning

Node

Topology Features



e ——
Rethinking: Is GCN truly a Deep Learning method?

0 Recall GNN formulation:
H&+D = g(SH®W "), § = p~1/2fD~1/2
O How about removing the non-linear component:
H&+1D) — gy k)
O Stacking multiple layers and add softmax classification:
¥ = softmax(H®)
= softmaxﬁ LSHOWOW® [y E=-1))

= softmax|SKH©OW)
High-order proximity
Wu, Felix, et al. Simplifying graph convolutional networks. ICML, 2019.




e
Rethinking: Is GCN truly a Deep Learning method?

O This simplified GNN (SGC) shows remarkable results:

Node classification Text Classification

Cora Citeseer Pubmed Dataset | Model | Test Acc. T  Time (seconds) |
GCN 814404 | 709405 | 79.0+0.4 0 T il il ey
GAT 83.3+0.7 126 +0.6 8.5 0.3 - GCN | 97.0+0.2 129.6 + 9.9
FastGCN 79.8 4+ 0.3 68.8 + 0.6 TrAE£03 SGC | 97.2+0.1 1.90 £0.03
GIN il i Y | 66.1 4+ 0.9 T 4=12 RS GCN | 93.8+0.2 245.0 4+ 13.0
[Net 80.2+3.0" | 67.3+0.5 | 78.3+ 0.6 9GC | 240502 302001
AdalNet | 81.9+1.9" | 70.6 £0.8" | 77.8 +0.71 Ohsumed | ooy | Co2F0-1 2024 LT
DGI 2.5 B ALT T1.6 0.7 TBAE0.T ——mEy Ty R
SGC 81.0x0.0 1.940.1 78.9+0.0 L SGC | 75.9+0.3 4.00 & 0.04

Wu, Felix, et al. Simplifying graph convolutional networks. ICML, 2019.



Summaries and Conclusions

O Unsupervised v.s. (Semi-)Supervised

O Learning for Networks v.s. Learning via Graphs

O Topology-driven v.s. Feature-driven

O Both GCN and NE need to treat the counterpart as the baselines

Network Feature-based
Embedding Learning

Topology Node

Features




Nodes & Links

Node Neighborhood

Pair-wise Proximity

Community

Hyper Edges

Global Structure

Thanks!

Non-transitivity
Asymmetric Transitivity
Uncertainty
Dynamic
Heterogeneity

Interpretability

Network
Embedding

Topology

GCN Feature-based
Learning

Node
Features
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